当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterizing AFM Tip Lateral Positioning Variability Through Non-vector Space Control-based Nanometrology
IEEE Transactions on Nanotechnology ( IF 2.1 ) Pub Date : 2020-01-01 , DOI: 10.1109/tnano.2019.2950267
Zhiyong Sun , Yu Cheng , Ning Xi , Ruiguo Yang , Yongliang Yang , Liangliang Chen , Bo Song

Atomic force microscopy (AFM) based nanotechnology has been widely implemented in various fields for decades in light of its overwhelming advantages, such as nanometer spatial resolution, adaptability to liquid ambient, and various nanomechanical/electrical metrological approaches. It is noted that though AFM possesses imaging capability up to nanometer resolution, it is hard to achieve nanometer level positioning precision due to the existing system variability, especially the thermal drift, which distorts AFM images through relatively long capturing time. Since an AFM image is typically utilized as a global reference map to navigate its tip to the desired locations for precise measurement and manipulation, the system variability distorted image will definitely diversify the experimental results. Therefore, it is necessary to characterize the positioning variability for better experimental results evaluation and decision-making. Although various approaches were proposed to evaluate AFM positioning error, to our best knowledge, there is little research about characterizing its positioning variability precisely and systematically. In this study, we present a universal metrological approach to quantitatively measure AFM tip locating variability by developing a featureless spiral local scan strategy together with the non-vector space (NVS) navigation approach. As a demonstration, the proposed nanometrology was conducted on a specific AFM platform to unravel its positioning property.

中文翻译:

通过基于非矢量空间控制的纳米计量学表征 AFM 尖端横向定位可变性

数十年来,基于原子力显微镜 (AFM) 的纳米技术凭借其压倒性优势,如纳米空间分辨率、对液体环境的适应性以及各种纳米机械/电气计量方法,已广泛应用于各个领域。值得注意的是,虽然AFM具有高达纳米分辨率的成像能力,但由于现有系统的可变性,特别是热漂移,使得AFM图像在较长的捕获时间下失真,很难达到纳米级的定位精度。由于 AFM 图像通常用作全局参考图,以将其尖端导航到所需位置以进行精确测量和操作,因此系统可变性失真图像肯定会使实验结果多样化。所以,为了更好的实验结果评估和决策,有必要表征定位可变性。尽管提出了各种方法来评估 AFM 定位误差,但据我们所知,关于精确和系统地表征其定位变异性的研究很少。在这项研究中,我们提出了一种通用的计量方法,通过开发无特征的螺旋局部扫描策略和非矢量空间 (NVS) 导航方法来定量测量 AFM 尖端定位的可变性。作为演示,提议的纳米计量学是在特定的 AFM 平台上进行的,以揭示其定位特性。据我们所知,关于精确和系统地表征其定位可变性的研究很少。在这项研究中,我们提出了一种通用的计量方法,通过开发无特征的螺旋局部扫描策略和非矢量空间 (NVS) 导航方法来定量测量 AFM 尖端定位的可变性。作为演示,提议的纳米计量学是在特定的 AFM 平台上进行的,以揭示其定位特性。据我们所知,关于精确和系统地表征其定位可变性的研究很少。在这项研究中,我们提出了一种通用的计量方法,通过开发无特征的螺旋局部扫描策略和非矢量空间 (NVS) 导航方法来定量测量 AFM 尖端定位的可变性。作为演示,提议的纳米计量学是在特定的 AFM 平台上进行的,以揭示其定位特性。
更新日期:2020-01-01
down
wechat
bug