当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical shape optimization based on meshless method and stochastic optimization technique
Engineering with Computers Pub Date : 2019-02-02 , DOI: 10.1007/s00366-019-00714-3
S. D. Daxini , J. M. Prajapati

This paper puts forward a newer approach for structural shape optimization by combining a meshless method (MM), i.e. element-free Galerkin (EFG) method, with swarm intelligence (SI)-based stochastic ‘zero-order’ search technique, i.e. artificial bee colony (ABC), for 2D linear elastic problems. The proposed combination is extremely beneficial in structural shape optimization because MM, when used for structural analysis in shape optimization, eliminates inherent issues of well-known grid-based numerical techniques (i.e. FEM) such as mesh distortion and subsequent remeshing while handling large shape changes, poor accuracy due to discontinuous secondary field variables across element boundaries needing costly post-processing techniques and grid optimization to minimize computational errors. Population-based stochastic optimization technique such as ABC eliminates computational burden, complexity and errors associated with design sensitivity analysis. For design boundary representation, Akima spline interpolation has been used in the present work owing to its enhanced stability and smoothness over cubic spline. The effectiveness, validity and performance of the proposed technique are established through numerical examples of cantilever beam and fillet geometry in 2D linear elasticity for shape optimization with behavior constraints on displacement and von Mises stress. For both these problems, influence of a number of design variables in shape optimization has also been investigated.

中文翻译:

基于无网格法和随机优化技术的数值形状优化

本文通过将无网格方法(MM),即无元素伽辽金(EFG)方法与基于群智能(SI)的随机“零阶”搜索技术,即人工蜜蜂相结合,提出了一种新的结构形状优化方法。殖民地 (ABC),用于二维线弹性问题。所提出的组合在结构形状优化中极为有利,因为当 MM 在用于形状优化中的结构分析时,消除了众所周知的基于网格的数值技术(即 FEM)的固有问题,例如网格变形和随后的重新网格划分,同时处理大的形状变化,由于跨单元边界的不连续次要场变量需要昂贵的后处理技术和网格优化以最大限度地减少计算错误,因此精度较差。基于群体的随机优化技术(例如 ABC)消除了与设计敏感性分析相关的计算负担、复杂性和错误。对于设计边界表示,由于 Akima 样条插值在三次样条上具有增强的稳定性和平滑性,因此已在当前工作中使用。所提出技术的有效性、有效性和性能是通过二维线性弹性中悬臂梁和圆角几何形状的数值示例来建立的,用于形状优化,对位移和 von Mises 应力进行行为约束。对于这两个问题,还研究了许多设计变量在形状优化中的影响。由于 Akima 样条插值在三次样条上具有增强的稳定性和平滑性,因此已在当前工作中使用。所提出技术的有效性、有效性和性能是通过二维线性弹性中悬臂梁和圆角几何形状的数值示例来建立的,用于形状优化,对位移和 von Mises 应力进行行为约束。对于这两个问题,还研究了许多设计变量在形状优化中的影响。由于 Akima 样条插值在三次样条上具有增强的稳定性和平滑性,因此已在当前工作中使用。所提出技术的有效性、有效性和性能是通过二维线性弹性中悬臂梁和圆角几何形状的数值示例来建立的,用于形状优化,对位移和 von Mises 应力进行行为约束。对于这两个问题,还研究了许多设计变量在形状优化中的影响。通过二维线性弹性中悬臂梁和圆角几何形状的数值示例,确定了所提出技术的有效性和性能,以进行形状优化,并对位移和 von Mises 应力进行行为约束。对于这两个问题,还研究了许多设计变量在形状优化中的影响。通过二维线性弹性中悬臂梁和圆角几何形状的数值示例,确定了所提出技术的有效性和性能,以进行形状优化,并对位移和 von Mises 应力进行行为约束。对于这两个问题,还研究了许多设计变量在形状优化中的影响。
更新日期:2019-02-02
down
wechat
bug