当前位置: X-MOL 学术Bio-des. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid assembling organ prototypes with controllable cell-laden multi-scale sheets
Bio-Design and Manufacturing ( IF 7.9 ) Pub Date : 2019-02-05 , DOI: 10.1007/s42242-019-00032-z
Qing Gao , Peng Zhao , Ruijian Zhou , Peng Wang , Jianzhong Fu , Yong He

A native organ has heterogeneous structures, strength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fabricate organ prototypes with controlled cell deposition by integrating extrusion-based 3D printing, electrospinning, and 3D bioprinting. Multi-scale sheets were first fabricated by 3D printing and electrospinning; then, all the sheets were assembled into organ prototypes by sol–gel reaction during bioprinting. With this method, macroscale structures fabricated by 3D printing ensure the customized structures and provide mechanical support, nanoscale structures fabricated by electrospinning offer a favorable environment for cell growth, and different types of cells with controllable densities are deposited in accurate locations by bioprinting. The results show that L929 mouse fibroblasts encapsulated in the structures exhibited over 90% survival within 10 days and maintained a high proliferation rate. Furthermore, the cells grew in spherical shapes first and then migrated to the nanoscale fibers showing stretched morphology. Additionally, a branched vascular structure was successfully fabricated using the presented method. Compared with other methods, this strategy offers an easy way to simultaneously realize the shape control, nanofibrous structures, and cell accurate deposition, which will have potential applications in tissue engineering.

中文翻译:

具有可控的含细胞多尺度片材的快速组装器官原型

天然器官具有异质结构,强度和细胞成分。制造形状,强度和细胞可控的器官原型是一个巨大的挑战。本文中,通过集成基于挤出的3D打印,静电纺丝和3D生物打印,开发了一种混合方法来制造具有受控细胞沉积的器官原型。多尺度片材首先通过3D打印和静电纺丝制成;然后,所有薄片在生物打印过程中通过溶胶-凝胶反应组装成器官原型。通过这种方法,通过3D打印制造的宏观结构可确保自定义结构并提供机械支撑,通过静电纺丝制造的纳米结构为细胞生长提供了良好的环境,通过生物打印将密度可控的不同类型的细胞沉积在准确的位置。结果显示,封装在结构中的L929小鼠成纤维细胞在10天之内表现出90%以上的存活率,并保持了较高的增殖率。此外,细胞首先以球形生长,然后迁移到表现出拉伸形态的纳米级纤维。另外,使用提出的方法成功地制造了分支血管结构。与其他方法相比,此策略提供了一种同时实现形状控制,纳米纤维结构和细胞精确沉积的简便方法,这将在组织工程中具有潜在的应用。结果显示,封装在结构中的L929小鼠成纤维细胞在10天之内表现出90%以上的存活率,并保持了较高的增殖率。此外,细胞首先以球形生长,然后迁移到表现出拉伸形态的纳米级纤维。另外,使用提出的方法成功地制造了分支血管结构。与其他方法相比,此策略提供了一种同时实现形状控制,纳米纤维结构和细胞精确沉积的简便方法,这将在组织工程中具有潜在的应用。结果显示,封装在结构中的L929小鼠成纤维细胞在10天之内表现出90%以上的存活率,并保持了较高的增殖率。此外,细胞首先以球形生长,然后迁移到表现出拉伸形态的纳米级纤维。另外,使用提出的方法成功地制造了分支血管结构。与其他方法相比,此策略提供了一种同时实现形状控制,纳米纤维结构和细胞精确沉积的简便方法,这将在组织工程中具有潜在的应用。使用提出的方法成功地制造了分支血管结构。与其他方法相比,此策略提供了一种同时实现形状控制,纳米纤维结构和细胞精确沉积的简便方法,这将在组织工程中具有潜在的应用。使用提出的方法成功地制造了分支血管结构。与其他方法相比,此策略提供了一种同时实现形状控制,纳米纤维结构和细胞精确沉积的简便方法,这将在组织工程中具有潜在的应用。
更新日期:2019-02-05
down
wechat
bug