当前位置: X-MOL 学术Friction › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstress cycle and contact fatigue of spiral bevel gears by rolling-sliding of asperity contact
Friction ( IF 6.3 ) Pub Date : 2020-01-04 , DOI: 10.1007/s40544-019-0335-x
Wei Cao , Si Ren , Wei Pu , Ke Xiao

The rolling contact fatigue (RCF) model is commonly used to predict the contact fatigue life when the sliding is insignificant in contact surfaces. However, many studies reveal that the sliding, compared to the rolling state, can lead to a considerable reduction of the fatigue life and an excessive increase of the pitting area, which result from the microscopic stress cycle growth caused by the sliding of the asperity contact. This suggests that fatigue life in the rolling-sliding condition can be overestimated based only on the RCF model. The rubbing surfaces of spiral bevel gears are subject to typical rolling-sliding motion. This paper aims to study the mechanism of the micro stress cycle along the meshing path and provide a reasonable method for predicting the fatigue life in spiral bevel gears. The microscopic stress cycle equation is derived with the consideration of gear meshing parameters. The combination of the RCF model and asperity stress cycle is developed to calculate the fatigue life in spiral bevel gears. We find that the contact fatigue life decreases significantly compared with that obtained from the RCF model. There is strong evidence that the microscopic stress cycle is remarkably increased by the rolling-sliding motion of the asperity contact, which is consistent with the experimental data in previous literature. In addition, the fatigue life under different assembling misalignments are investigated and the results demonstrate the important role of misalignments on fatigue life.

中文翻译:

粗糙接触的滚动滑动导致锥齿轮的微应力循环和接触疲劳

滚动接触疲劳(RCF)模型通常用于预测在接触表面的滑动不明显时的接触疲劳寿命。然而,许多研究表明,与滚动状态相比,滑动可能导致疲劳寿命的显着降低,而点蚀面积的过度增加,这是由于粗糙接触的滑动导致的微观应力循环增长而导致的。 。这表明仅基于RCF模型可以高估滚动滑动条件下的疲劳寿命。螺旋锥齿轮的摩擦表面经受典型的滚动滑动运动。本文旨在研究沿啮合路径的微应力循环机理,并为预测锥齿轮的疲劳寿命提供合理的方法。考虑齿轮啮合参数,得出微观应力循环方程。开发了RCF模型和粗糙应力循环的组合,以计算螺旋锥齿轮的疲劳寿命。我们发现,与从RCF模型获得的接触疲劳寿命相比,接触疲劳寿命显着降低。有力的证据表明,粗糙接触的滚动运动显着增加了微观应力循环,这与以前的文献中的实验数据一致。此外,研究了不同装配不对中情况下的疲劳寿命,结果证明了不对准对疲劳寿命的重要作用。开发了RCF模型和粗糙应力循环的组合,以计算螺旋锥齿轮的疲劳寿命。我们发现,与从RCF模型获得的接触疲劳寿命相比,接触疲劳寿命显着降低。有力的证据表明,粗糙接触的滚动运动显着增加了微观应力循环,这与以前的文献中的实验数据一致。此外,研究了不同装配不对中下的疲劳寿命,结果证明了不对准对疲劳寿命的重要作用。开发了RCF模型和粗糙应力循环的组合,以计算螺旋锥齿轮的疲劳寿命。我们发现,与从RCF模型获得的接触疲劳寿命相比,接触疲劳寿命显着降低。有力的证据表明,粗糙接触的滚动运动显着增加了微观应力循环,这与以前的文献中的实验数据一致。此外,研究了不同装配不对中下的疲劳寿命,结果证明了不对准对疲劳寿命的重要作用。有力的证据表明,粗糙接触的滚动运动显着增加了微观应力循环,这与以前的文献中的实验数据一致。此外,研究了不同装配不对中情况下的疲劳寿命,结果证明了不对准对疲劳寿命的重要作用。有力的证据表明,粗糙接触的滚动运动显着增加了微观应力循环,这与以前的文献中的实验数据一致。此外,研究了不同装配不对中下的疲劳寿命,结果证明了不对准对疲劳寿命的重要作用。
更新日期:2020-01-04
down
wechat
bug