当前位置: X-MOL 学术Meteorol. Atmos. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of employing local climate zone classification for mesoscale modelling over Beijing metropolitan area
Meteorology and Atmospheric Physics ( IF 1.9 ) Pub Date : 2019-08-27 , DOI: 10.1007/s00703-019-00692-7
Qingchen Mu , Shiguang Miao , Yongwei Wang , Yuhuan Li , Xiaodong He , Chao Yan

Urban land use and landscape morphology exert notable influences on local climate and its surrounding environment. Better understanding of the complex interplay between urban landscape and overlying atmosphere could contributes to decision-making related to urban planning and risk assessment. This paper classifies local climate zones (LCZs) over Beijing metropolitan area following the World Urban Database and Access Portal Tools (WUDAPT) level 0 method, and evaluates the effect of LCZ classification on mesoscale Weather Research and Forecasting (WRF) modelling over the city. Specifically, according to the method proposed by Stewart and Oke (Bull Am Meteor Soc 93(12):1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1 , 2012), the LCZ classification across Beijing is created based on the Landsat imagery of the Earth’s surface. The derived LCZ system is then imported to the WRF model, and coupled to different urban canopy schemes, i.e. single-layer urban canopy model (SLUCM), multi-layer urban canopy model (BEP—building effect parameterization), and the BEP model with a simple building energy model (BEP + BEM). The performance of employing this refined land use classification scheme versus those using United States Geological Survey land use data is evaluated by comparisons with weather station observations. The results, e.g. the spatial distribution of 2-m temperature and the diurnal variation of the surface heat fluxes, indicate that the LCZ classification scheme yields better comparisons than the default land use method, especially when coupled to the SLUCM as compared to BEP and BEP + BEM. This finding qualifies the coupling scheme of LCZ and SLUCM as a promising albeit simple option for weather modelling in a finer resolution.
更新日期:2019-08-27
down
wechat
bug