当前位置: X-MOL 学术J. Vis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental analysis of oscillatory airflow in a bronchiole model with stenosis
Journal of Visualization ( IF 1.7 ) Pub Date : 2009-06-01 , DOI: 10.1007/bf03181953
J-K. Kim , M. Kawahashi , H. Hirahara , Y. Iwasaki

As the mechanism of gas transport and exchange in human respiratory ventilation, the complicated processes of mixing and diffusion in airways of human lungs are considered. However the mechanism has not been clarified enough. On the other hand, the analysis of detailed mechanism in the case of artificial ventilation like HFOV (High Frequency Oscillatory Ventilation) is strongly required for the development of clinical treatments on patients with respiration disorder. In HFOV, it is considered that pendelluft becomes one of the important factors of gas transport and exchange because of high frequency ventilation in comparison with natural breathing. As increase of the frequency, the different time constants of lung units generate phase lag of ventilation in airways of lungs. The phase lag of ventilation causes to generate pendelluft. The time constant is determined by compliance and flow resistance of lung unit. In order to investigate the effect of the different time constants induced by the difference of flow resistance in a part of respiratory bronchiole of human lungs, the experimental study has been carried out by using multi-bifurcated micro channels as a model of bronchiole. The flow resistance in the model channels was produced by a stenosis. The velocity distributions of ventilation flows in the channels with and without the stenosis have been measured by using μ-PIV technique. The results obtained show the frequency effects on the flow pattern in the bronchiole model channels and the appearance of pendelluft.

中文翻译:

细支气管狭窄模型中振荡气流的实验分析

作为人体呼吸通气中气体运输和交换的机制,考虑了人肺气道中复杂的混合和扩散过程。然而,机制还没有得到足够的阐明。另一方面,对于呼吸障碍患者的临床治疗的发展,强烈需要对 HFOV(高频振荡通气)等人工通气的详细机制进行分析。在HFOV中,与自然呼吸相比,高频通气被认为是pendelluft成为气体运输和交换的重要因素之一。随着频率的增加,肺单位的不同时间常数产生肺气道通气的相位滞后。通风的相位滞后导致产生摆动。时间常数由肺单位的顺应性和流动阻力决定。为了研究人肺部分呼吸性细支气管内流动阻力差异引起的不同时间常数的影响,采用多分叉微通道作为细支气管模型进行了实验研究。模型通道中的流动阻力是由狭窄产生的。使用μ-PIV技术测量了有狭窄和无狭窄的通道中的通风流的速度分布。获得的结果显示了频率对细支气管模型通道中流动模式的影响和垂悬的出现。为了研究人肺部分呼吸性细支气管内流动阻力差异引起的不同时间常数的影响,采用多分叉微通道作为细支气管模型进行了实验研究。模型通道中的流动阻力是由狭窄产生的。使用μ-PIV技术测量了有狭窄和无狭窄的通道中的通风流的速度分布。获得的结果显示了频率对细支气管模型通道中流动模式的影响和垂悬的出现。为了研究人肺部分呼吸性细支气管内流动阻力差异引起的不同时间常数的影响,采用多分叉微通道作为细支气管模型进行了实验研究。模型通道中的流动阻力是由狭窄产生的。使用μ-PIV技术测量了有狭窄和无狭窄的通道中的通风流的速度分布。获得的结果显示了频率对细支气管模型通道中流动模式的影响和垂悬的出现。模型通道中的流动阻力是由狭窄产生的。使用μ-PIV技术测量了有狭窄和无狭窄的通道中的通风流的速度分布。获得的结果显示了频率对细支气管模型通道中流动模式的影响和垂悬的出现。模型通道中的流动阻力是由狭窄产生的。使用μ-PIV技术测量了有狭窄和无狭窄的通道中的通风流的速度分布。获得的结果显示了频率对细支气管模型通道中流动模式的影响和垂悬的出现。
更新日期:2009-06-01
down
wechat
bug