当前位置: X-MOL 学术Acta Metall. Sin. (Engl. Lett.) › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence Factors Analysis of Fe–C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology
Acta Metallurgica Sinica-English Letters ( IF 3.5 ) Pub Date : 2019-10-15 , DOI: 10.1007/s40195-019-00957-5
Ming He , Xian-Liang Li , Qing-Wei Wang , Qiang Wang , Zhi-Yuan Liu , Chong-Jun Wang

In the electromagnetic induction-controlled automated steel teeming (EICAST) technology of ladle, the height and location of the blocking layer are critical factors to determine the structure size and installation location of induction coil. And, they are also the key parameters affecting the successful implementation of this new technology. In this paper, the influence of the liquid steel temperature, the holding time and the alloy composition on the height and location of the blocking layer were studied by numerical simulation. The simulation results were verified by 40 t ladle industrial experiments. Moreover, the regulation approach of the blocking layer was determined, and the determination process of coil size and its installation location were also analyzed. The results show that the location of the blocking layer moves down with the increase in the liquid steel temperature and the holding time. The height of the blocking layer decreases with the increase in the liquid steel temperature; however, it increases with the increase in the holding time. The height and location of the blocking layer can be largely adjusted by changing the alloy composition of filling particles in the upper nozzle. When the liquid steel temperature is 1550 °C, the holding time is 180 min and the alloy composition is confirmed, the melting layer height is 120 mm, and the blocking layer height is 129 mm, which are beneficial to design and installation of induction coil. These results are very important for the industrial implementation of the EICAST technology.

中文翻译:

电磁感应控制自动钢印工艺中Fe–C合金阻挡层的影响因素分析

钢包的电磁感应控制自动钢浇注(EICAST)技术中,阻挡层的高度和位置是确定感应线圈的结构尺寸和安装位置的关键因素。而且,它们也是影响这项新技术成功实施的关键参数。本文通过数值模拟研究了钢水温度,保温时间和合金成分对阻挡层高度和位置的影响。通过40吨钢包工业实验验证了仿真结果。此外,确定了阻挡层的调节方法,并分析了线圈尺寸的确定过程及其安装位置。结果表明,随着钢水温度和保温时间的增加,阻挡层的位置向下移动。阻挡层的高度随着钢水温度的升高而降低;但是,随着保持时间的增加而增加。阻挡层的高度和位置可以通过改变上部喷嘴中填充颗粒的合金成分来大幅度调节。当钢水温度为1550°C时,保温时间为180 min,确认合金成分,熔化层高度为120 mm,阻挡层高度为129 mm,有利于感应线圈的设计和安装。 。这些结果对于EICAST技术的工业实施非常重要。阻挡层的高度随着钢水温度的升高而降低;但是,随着保持时间的增加而增加。阻挡层的高度和位置可以通过改变上部喷嘴中填充颗粒的合金成分来大幅度调节。当钢水温度为1550°C时,保温时间为180 min,确认合金成分,熔化层高度为120 mm,阻挡层高度为129 mm,有利于感应线圈的设计和安装。 。这些结果对于EICAST技术的工业实施非常重要。阻挡层的高度随着钢水温度的升高而降低;但是,随着保持时间的增加而增加。阻挡层的高度和位置可以通过改变上部喷嘴中填充颗粒的合金成分来大幅度调节。当钢水温度为1550°C时,保温时间为180 min,确认合金成分,熔化层高度为120 mm,阻挡层高度为129 mm,有利于感应线圈的设计和安装。 。这些结果对于EICAST技术的工业实施非常重要。阻挡层的高度和位置可以通过改变上部喷嘴中填充颗粒的合金成分来大幅度调节。当钢水温度为1550°C时,保温时间为180 min,确认合金成分,熔化层高度为120 mm,阻挡层高度为129 mm,有利于感应线圈的设计和安装。 。这些结果对于EICAST技术的工业实施非常重要。阻挡层的高度和位置可以通过改变上部喷嘴中填充颗粒的合金成分来大幅度调节。当钢水温度为1550°C时,保温时间为180 min,确认合金成分,熔化层高度为120 mm,阻挡层高度为129 mm,有利于感应线圈的设计和安装。 。这些结果对于EICAST技术的工业实施非常重要。
更新日期:2019-10-15
down
wechat
bug