当前位置: X-MOL 学术Health Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuroman: Voxel Phantoms from Surface Models of 300 Head Structures Including 12 Pairs of Cranial Nerves
Health Physics ( IF 1.0 ) Pub Date : 2019-12-20 , DOI: 10.1097/hp.0000000000001186
Jin Seo Park 1
Affiliation  

For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans. The phantoms currently used still do not have sophisticated structures. This paper presents voxel and surface models of 300 head structures with cranial nerves and reports on a technique for voxel reconstruction of the cranial nerves having very thin and small structures. In real-color sectioned images of the head (voxel size: 0.1 mm), 300 structures were segmented using Photoshop. A surface reconstruction was performed automatically on Mimics. Voxel conversion was run on Voxel Studio. The abnormal shapes of the voxel models were found and classified into three types: thin cord, thin layers, and thin parts in the structures. The abnormal voxel models were amended using extended, filled, and manual voxelization methods devised for this study. Surface models in STL format and as PDF files of the 300 head structures were produced. The STL format has good scalability, so it can be used in most three-dimensional surface model software. The PDF file is very user friendly for students and researchers who want to learn the head anatomy. Voxel models of 300 head structures were produced (TXT format), and their voxel quantity and weight were measured. A voxel model is difficult to handle, and the surface model cannot use the radiation simulation. Consequently, the best method for making precise phantoms is one in which the flaws of the voxel and surface models complement each other, as in the present study.

中文翻译:

Neuroman:来自300种头部结构(包括12对颅神经)的表面模型的体素幻影

为了精确模拟电磁辐射效果,体素体模需要详细的结构以逼近人类。当前使用的幻影仍然没有复杂的结构。本文介绍了具有颅神经的300个头部结构的体素和表面模型,并报告了一种用于重建具有非常细小结构的颅神经的体素的技术。在头部的彩色切片图像(体素大小:0.1 mm)中,使用Photoshop分割了300个结构。在Mimics上自动执行表面重建。Voxel转换在Voxel Studio上运行。发现体素模型的异常形状,并将其分为三种类型:细线,薄层和结构中的薄部分。使用扩展的,填充的,和为这项研究设计的手动体素化方法。生成了STL格式的表面模型以及300个头部结构的PDF文件。STL格式具有良好的可伸缩性,因此可以在大多数三维表面模型软件中使用。PDF文件对于想要学习头部解剖结构的学生和研究人员来说非常友好。制作了300个头部结构的体素模型(TXT格式),并测量了其体素的数量和重量。体素模型很难处理,表面模型不能使用辐射模拟。因此,如本研究所述,制作精确体模的最佳方法是将体素和表面模型的缺陷相互补充的一种方法。STL格式具有良好的可伸缩性,因此可以在大多数三维表面模型软件中使用。PDF文件对于想要学习头部解剖结构的学生和研究人员来说非常友好。制作了300个头部结构的体素模型(TXT格式),并测量了其体素的数量和重量。体素模型很难处理,表面模型不能使用辐射模拟。因此,如本研究所述,制作精确体模的最佳方法是将体素和表面模型的缺陷相互补充的一种方法。STL格式具有良好的可伸缩性,因此可以在大多数三维表面模型软件中使用。PDF文件对于想要学习头部解剖结构的学生和研究人员来说非常友好。制作了300个头部结构的体素模型(TXT格式),并测量了其体素的数量和重量。体素模型很难处理,表面模型不能使用辐射模拟。因此,如本研究所述,制作精确体模的最佳方法是将体素和表面模型的缺陷相互补充的一种方法。测量其体素的数量和重量。体素模型很难处理,表面模型不能使用辐射模拟。因此,如本研究所述,制作精确体模的最佳方法是将体素和表面模型的缺陷相互补充的一种方法。测量其体素的数量和重量。体素模型很难处理,表面模型不能使用辐射模拟。因此,如本研究所述,制作精确体模的最佳方法是将体素和表面模型的缺陷相互补充的一种方法。
更新日期:2020-12-17
down
wechat
bug