当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the Physical and Chemical Characteristics of DBD: The Effect of N2/O2 Mixture Ratio on the Product Regulation
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2019-05-08 , DOI: 10.1007/s11090-019-09998-1
Kun Liu , Zhenfeng Zheng , Shiting Liu , Youyi Hu

The chemical product behaviors of dielectric barrier discharge (DBD) in N2/O2 gas mixtures are investigated. Besides ozone mode and nitrogen oxides mode, a transitional mode in which O3 and NO2 coexist is observed. Under higher oxygen content condition, higher applied voltage and lower gas flow rate contribute to the appearance of the transitional mode. To further investigate the physical and chemical characteristics of DBD under different oxygen contents, the energy per area is introduced. It presents a positive relationship with applied voltage and a negative relationship with gas flow rate. And the energy per area of transitional mode is higher than that of ozone mode, but lower than that of nitrogen oxides mode. As the oxygen content rises, the critical energy per area of mode transition increases. Through the analysis of chemical products, it is found that higher oxygen content is beneficial to the generation of O3. The NO concentration is positively correlated with applied voltage. And the optimum applied voltage for obtaining the maximum NO2 concentration increases with the rise of gas flow rate. With respect to N2O, they are easier to be obtained at higher applied voltage and lower oxygen content under higher gas flow rate condition. And in the case of lower gas flow rate, lower applied voltage and higher oxygen content are beneficial to its generation. Besides, the maximum N2O5 concentration tends to be obtained at 50% oxygen content in the case of lower applied voltage and higher gas flow rate.

中文翻译:

DBD的理化特性研究:N2/O2混合比对产品调节的影响

研究了 N2/O2 气体混合物中介质阻挡放电 (DBD) 的化学产物行为。除臭氧模式和氮氧化物模式外,还观察到O3和NO2共存的过渡模式。在较高的氧含量条件下,较高的外加电压和较低的气体流速有助于过渡模式的出现。为了进一步研究不同氧含量下 DBD 的物理和化学特性,引入了单位面积能量。它与外加电压呈正相关,与气体流速呈负相关。并且过渡模式的单位面积能量高于臭氧模式,但低于氮氧化物模式。随着氧含量的增加,每单位模式转换区域的临界能量增加。通过对化工产品的分析,发现较高的氧含量有利于O3的生成。NO 浓度与施加的电压呈正相关。并且获得最大NO2浓度的最佳施加电压随着气体流量的增加而增加。对于 N2O,在较高的外加电压和较低的氧气含量下,在较高的气体流速条件下更容易获得。并且在气体流速较低的情况下,较低的外加电压和较高的氧含量有利于其产生。此外,在较低的外加电压和较高的气体流量的情况下,N2O5 浓度往往在 50% 的氧气含量下获得。并且获得最大NO2浓度的最佳施加电压随着气体流量的增加而增加。对于 N2O,在较高的外加电压和较低的氧气含量下,在较高的气体流速条件下更容易获得。并且在气体流速较低的情况下,较低的外加电压和较高的氧含量有利于其产生。此外,在较低的外加电压和较高的气体流量的情况下,N2O5 浓度往往在 50% 的氧气含量下获得。并且获得最大NO2浓度的最佳施加电压随着气体流量的增加而增加。对于 N2O,在较高的外加电压和较低的氧气含量下,在较高的气体流速条件下更容易获得。并且在气体流速较低的情况下,较低的外加电压和较高的氧含量有利于其产生。此外,在较低的外加电压和较高的气体流量的情况下,N2O5 浓度往往在 50% 的氧气含量下获得。较低的外加电压和较高的氧含量有利于其产生。此外,在较低的外加电压和较高的气体流量的情况下,N2O5 浓度往往在 50% 的氧气含量下获得。较低的外加电压和较高的氧含量有利于其产生。此外,在较低的外加电压和较高的气体流量的情况下,N2O5 浓度往往在 50% 的氧气含量下获得。
更新日期:2019-05-08
down
wechat
bug