当前位置: X-MOL 学术Annu. Rev. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms Underlying the Neural Computation of Head Direction.
Annual Review of Neuroscience ( IF 12.1 ) Pub Date : 2020-07-08 , DOI: 10.1146/annurev-neuro-072116-031516
Brad K Hulse 1 , Vivek Jayaraman 1
Affiliation  

Many animals use an internal sense of direction to guide their movements through the world. Neurons selective to head direction are thought to support this directional sense and have been found in a diverse range of species, from insects to primates, highlighting their evolutionary importance. Across species, most head-direction networks share four key properties: a unique representation of direction at all times, persistent activity in the absence of movement, integration of angular velocity to update the representation, and the use of directional cues to correct drift. The dynamics of theorized network structures called ring attractors elegantly account for these properties, but their relationship to brain circuits is unclear. Here, we review experiments in rodents and flies that offer insights into potential neural implementations of ring attractor networks. We suggest that a theory-guided search across model systems for biological mechanisms that enable such dynamics would uncover general principles underlying head-direction circuit function.

中文翻译:


头部方向神经计算的基础机制。

许多动物使用内在的方向感来引导它们在世界中的运动。对头部方向有选择性的神经元被认为支持这种方向感,并且已经在从昆虫到灵长类动物的各种物种中发现,突出了它们在进化上的重要性。在物种中,大多数头部方向网络共享四个关键特性:始终唯一的方向表示、在没有运动的情况下持续活动、角速度的整合以更新表示,以及使用方向线索来纠正漂移。称为环吸引子的理论网络结构的动力学很好地解释了这些特性,但它们与大脑回路的关系尚不清楚。这里,我们回顾了啮齿动物和苍蝇的实验,这些实验提供了对环形吸引子网络的潜在神经实现的见解。我们建议,对实现这种动力学的生物机制的模型系统进行理论指导搜索将揭示头部方向电路功能的一般原理。

更新日期:2020-07-09
down
wechat
bug