当前位置: X-MOL 学术Mater. Renew. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO 2  + H 2 O oxidation
Materials for Renewable and Sustainable Energy Pub Date : 2019-01-31 , DOI: 10.1007/s40243-019-0142-3
Archishman Bose , Azharuddin Farooqui , Domenico Ferrero , Massimo Santarelli , Jordi Llorca

Chemical looping syngas production is a two-step redox cycle with oxygen carriers (metal oxides) circulating between two interconnected reactors. In this paper, the performance of pure CeO2/Ce2O3 redox pair was investigated for low-temperature syngas production via methane reduction together with identification of optimal ideal operating conditions. Comprehensive thermodynamic analysis for methane reduction and water and CO2 splitting was performed through process simulation by Gibbs free energy minimization in ASPEN Plus®. The reduction reactor was studied by varying the CH4/CeO2 molar ratio between 0.4 and 4 along with the temperature from 500 to 1000 °C. In the oxidation reactor, steam and carbon dioxide mixture oxidized the reduced metal back to CeO2, while producing simultaneous streams of CO and H2 respectively. Within the oxidation reactor, the flow and composition of the mixture gas were varied, together with reactor temperature between 500 and 1000 °C. The results indicate that the maximum CH4 conversion in the reduction reactor is achieved between 900 and 950 °C with CH4/CeO2 ratio of 0.7–0.8, while, for the oxidation reactor, the optimal condition can vary between 600 and 900 °C based on the requirement of the final product output (H2/CO). The system efficiency was around 62% for isothermal operations at 900 °C and complete redox reaction of the metal oxide.

中文翻译:

甲烷还原和CO 2 + H 2 O氧化对非催化氧化铈生产合成气的热力学评估

化学回路合成气的生产是两步氧化还原循环,氧气载体(金属氧化物)在两个相互连接的反应器之间循环。在本文中,研究了纯CeO 2 / Ce 2 O 3氧化还原对通过甲烷还原生产低温合成气的性能,并确定了最佳理想操作条件。为减少甲烷和水和二氧化碳综合热力学分析2通过流程模拟通过最小吉布斯自由能在阿斯彭加进行分割®。通过改变CH 4 / CeO 2来研究还原反应器摩尔比在0.4和4之间,温度范围从500到1000°C。在氧化反应器中,蒸汽和二氧化碳混合物将还原的金属氧化回CeO 2,同时分别产生同时的CO和H 2物流。在氧化反应器内,混合气体的流量和组成以及反应器温度在500至1000°C之间变化。结果表明,还原反应器中的最大CH 4转化率在900至950°C之间实现,CH 4 / CeO 2比为0.7–0.8,而对于氧化反应器,最佳条件可在600至900°之间变化C根据最终产品产量的要求(H 2/ CO)。对于900°C的等温运行以及金属氧化物的完全氧化还原反应,系统效率约为62%。
更新日期:2019-01-31
down
wechat
bug