当前位置: X-MOL 学术Artif. Intell. Rev. › 论文详情
Feature selection in image analysis: a survey
Artificial Intelligence Review ( IF 5.095 ) Pub Date : 2019-08-09 , DOI: 10.1007/s10462-019-09750-3
Verónica Bolón-Canedo, Beatriz Remeseiro

Image analysis is a prolific field of research which has been broadly studied in the last decades, successfully applied to a great number of disciplines. Since the apparition of Big Data, the number of digital images is explosively growing, and a large amount of multimedia data is publicly available. Not only is it necessary to deal with this increasing number of images, but also to know which features extract from them, and feature selection can help in this scenario. The goal of this paper is to survey the most recent feature selection methods developed and/or applied to image analysis, covering the most popular fields such as image classification, image segmentation, etc. Finally, an experimental evaluation on several popular datasets using well-known feature selection methods is presented, bearing in mind that the aim is not to provide the best feature selection method, but to facilitate comparative studies for the research community.
更新日期:2020-04-20

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug