当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels.
Nucleic Acids Research ( IF 16.6 ) Pub Date : 2020-04-06 , DOI: 10.1093/nar/gkaa055
Matthew R McFarland 1 , Corina D Keller 2 , Brandon M Childers 1 , Stephen A Adeniyi 1 , Holly Corrigall 1 , Adélaïde Raguin 2 , M Carmen Romano 2 , Ian Stansfield 1
Affiliation  

During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.

中文翻译:

tRNA合成酶耗竭的分子病因:尽管荷电的tRNA水平保持体内平衡,但仍诱导GCN4氨基酸饥饿反应。

在蛋白质合成过程中,带电荷的tRNA将氨基酸递送至翻译的核糖体,然后通过tRNA合成酶(aaRS)重新充电。在人类中,突变型aaRS引起多种神经系统疾病,但其分子病因尚未完全表征。为了了解系统对aaRS耗竭的反应,使用强力霉素通过tet-off控制对酵母谷氨酰胺aaRS基因(GLN4)进行转录调控。Gln4p的耗竭抑制了生长,并诱导了GCN4氨基酸饥饿反应,表明不带电荷的tRNA积累和Gcn2激酶激活。使用包括aaRS充电的整体翻译模型,模拟了Gln4p耗竭,确认翻译速度减慢。建模还显示,Gln4p耗竭会导致负反馈,该负反馈将Gln-tRNAGln的翻译需求与aaRS充电能力相匹配。使用tRNA Northern印迹实验证实,尽管Gln4p耗竭,这仍可维持正常的带电tRNAGln水平。模型分析解决了悖论,即尽管维持tRNAGln的充电水平,但Gln4p耗尽会触发GCN4响应,这揭示了正常情况下,aaRS群体可以在氨基酰化过程中螯合游离的不带电荷的tRNA。Gln4p消耗减少了这种螯合能力,使不带电荷的tRNAGln与Gcn2激酶相互作用。这项研究为突变的aaRS疾病病因学提供了新的思路,并解释了不带电荷的tRNA的aaRS隔离如何在非饥饿条件下阻止GCN4活化。尽管Gln4p耗竭,这仍可维持正常的带电tRNAGln水平,这已通过tRNA Northern印迹实验证实。模型分析解决了一个悖论,即尽管维持tRNAGln的充电水平,但Gln4p耗尽会触发GCN4响应,这揭示了正常情况下,aaRS群体可以在氨基酰化过程中螯合游离的不带电荷的tRNA。Gln4p消耗减少了这种螯合能力,使不带电荷的tRNAGln与Gcn2激酶相互作用。这项研究为突变的aaRS疾病病因学提供了新的思路,并解释了不带电荷的tRNA的aaRS隔离如何在非饥饿条件下阻止GCN4活化。尽管Gln4p耗竭,这仍可维持正常的带电tRNAGln水平,这已通过tRNA Northern印迹实验证实。模型分析解决了一个悖论,即尽管维持tRNAGln的充电水平,但Gln4p耗尽会触发GCN4响应,这揭示了正常情况下,aaRS群体可以在氨基酰化过程中螯合游离的不带电荷的tRNA。Gln4p消耗减少了这种螯合能力,使不带电荷的tRNAGln与Gcn2激酶相互作用。这项研究为突变的aaRS疾病病因学提供了新的思路,并解释了不带电荷的tRNA的aaRS隔离如何在非饥饿条件下阻止GCN4活化。揭示了正常情况下,aaRS群体可以在氨酰化过程中隔离游离的不带电荷的tRNA。Gln4p消耗减少了这种螯合能力,使不带电荷的tRNAGln与Gcn2激酶相互作用。这项研究为突变的aaRS疾病病因学提供了新的思路,并解释了不带电荷的tRNA的aaRS隔离如何在非饥饿条件下阻止GCN4活化。揭示了正常情况下,aaRS群体可以在氨酰化过程中隔离游离的不带电荷的tRNA。Gln4p消耗减少了这种螯合能力,使不带电荷的tRNAGln与Gcn2激酶相互作用。这项研究为突变的aaRS疾病病因学提供了新的思路,并解释了不带电荷的tRNA的aaRS隔离如何在非饥饿条件下阻止GCN4活化。
更新日期:2020-03-30
down
wechat
bug