当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oil-mineral flocculation and settling velocity in saline water.
Water Research ( IF 11.4 ) Pub Date : 2020-02-03 , DOI: 10.1016/j.watres.2020.115569
Leiping Ye 1 , Andrew J Manning 2 , Tian-Jian Hsu 1
Affiliation  

Cohesive particles in aquatic systems can play an important role in determining the fate of spilled oil via the generation of Oil-Mineral Aggregates (OMAs). Series of laboratory experiments have been conducted aiming at filling the knowledge gap regarding how cohesive clay particles influence the accumulation of petroleum through forming different aggregate structures and their resulting settling velocity. OMAs have been successfully created in a stirring jar with artificial sea-water, crude oil and two types of most common cohesive minerals, Kaolinite and Bentonite clay. With the magnetic stirrer adjusted to 490 rpm to provide a high level homogeneous flow turbulence (Turbulence dissipation ε estimated to be about 0.02 m2⋅s-3), droplet OMAs and flake/solid OMAs were obtained in oil-Kaolinite sample and oil-Bentonite sample, respectively. Kaolinite clay with relatively low flocculation rate (Rf = 0.13 min-1) tends to physically attach around the surface of oil droplets. With the lower density of oil, these oil-Kaolinite droplet OMAs generally show lower settling velocity comparing to pure mineral Kaolinite flocs. Differently, Bentonite clay with higher flocculation rate (Rf = 0.66 min-1) produces more porous flocs that can absorb or be absorbed by the oil and form compact flake/solid OMAs with higher density and settling velocity than pure Bentonite flocs. In the mixed Kaolinite-Bentonite sample (1:1 in weight), oil is observed to preferably interacting with Bentonite and increase settling velocity especially in larger floc size classes.

中文翻译:

矿物油在盐水中的絮凝和沉降速度。

水生系统中的粘性颗粒可通过生成油矿骨料(OMA)来确定溢油的命运,发挥重要作用。已经进行了一系列的实验室实验,旨在填补关于粘性黏土颗粒如何通过形成不同的聚集体结构及其沉降速度而影响石油积累的知识空白。OMA已在人工海水,原油和两种最常见的黏性矿物(高岭石和膨润土)的搅拌罐中成功创建。通过将电磁搅拌器调节至490 rpm以提供高水平的均匀流动湍流(湍流耗散ε估计约为0.02m2⋅s-3),可以在油-高岭石样品和油-膨润土中获得液滴OMA和薄片/固体OMA。样本。絮凝速率较低(Rf = 0.13 min-1)的高岭石粘土倾向于物理附着在油滴表面周围。由于油的密度较低,与纯矿物高岭石絮凝物相比,这些油高岭石液滴OMA通常显示出较低的沉降速度。与之不同的是,絮凝速率较高的膨润土粘土(Rf = 0.66 min-1)产生的多孔絮凝物比纯膨润土絮凝物更易被油吸收或吸收,并形成密度和沉降速度更高的致密片状/固体OMA。在混合的高岭石-膨润土样品(重量比为1:1)中,观察到油优选与膨润土相互作用并增加沉降速度,特别是在较大的絮凝物尺寸类别中。由于油的密度较低,与纯矿物高岭石絮凝物相比,这些油高岭石液滴OMA通常显示出较低的沉降速度。与之不同的是,絮凝速率较高的膨润土粘土(Rf = 0.66 min-1)产生的多孔絮凝物比纯膨润土絮凝物更易被油吸收或吸收,并形成密度和沉降速度更高的致密片状/固体OMA。在混合的高岭石-膨润土样品(重量比为1:1)中,观察到油优选与膨润土相互作用并增加沉降速度,特别是在较大的絮凝物尺寸类别中。由于油的密度较低,与纯矿物高岭石絮凝物相比,这些油高岭石液滴OMA通常显示出较低的沉降速度。与之不同的是,絮凝速率较高的膨润土粘土(Rf = 0.66 min-1)产生的多孔絮凝物比纯膨润土絮凝物更易被油吸收或吸收,并形成密度和沉降速度更高的致密片状/固体OMA。在混合的高岭石-膨润土样品(重量比为1:1)中,观察到油优选与膨润土相互作用并增加沉降速度,特别是在较大的絮凝物尺寸类别中。66 min-1)产生的多孔絮凝物比纯膨润土絮凝物更易被油吸收或被油吸收,并形成密度和沉降速度更高的致密片状/固体OMA。在混合的高岭石-膨润土样品(重量比为1:1)中,观察到油优选与膨润土相互作用并增加沉降速度,特别是在较大的絮凝物尺寸类别中。66 min-1)产生的多孔絮凝物比纯膨润土絮凝物更易被油吸收或被油吸收,并形成密度和沉降速度更高的致密片状/固体OMA。在混合的高岭石-膨润土样品(重量比为1:1)中,观察到油优选与膨润土相互作用并增加沉降速度,特别是在较大的絮凝物尺寸类别中。
更新日期:2020-02-03
down
wechat
bug