当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biofouling and me: My Stockholm syndrome with biofilms.
Water Research ( IF 11.4 ) Pub Date : 2020-02-02 , DOI: 10.1016/j.watres.2020.115576
Hans-Curt Flemming 1
Affiliation  

Biofouling is the undesired deposition and growth of microorganisms on surfaces, forming biofilms. The definition is subjective and operational: not every biofilm causes biofouling - only if a given a subjective "threshold of interference" is exceeded, biofilms cause technical or medical problems. These range from the formation of slime layers on ship hulls or in pipelines, which increase friction resistance, to separation membranes, on which biofilms increase hydraulic resistance, to heat exchangers where they interfere with heat transport to contamination of treated water by eroded biofilm cells which may comprise hygienically relevant microorganisms, and, most dangerous, to biofilms on implants and catheters which can cause persistent infections. The largest fraction of anti-fouling research, usually in short-term experiments, is focused on prevention or limiting primary microbial adhesion. Intuitively, this appears only logical, but turns out mostly hopeless. This is because in technical systems with open access for microorganisms, all surfaces are colonized sooner or later which explains the very limited success of that research. As a result, the use of biocides remains the major tool to fight persistent biofilms. However, this is costly in terms of biocides, it stresses working materials, causes off-time and environmental damage and it usually leaves large parts of biofilms in place, ready for regrowth. In order to really solve biofouling problems, it is necessary to learn how to live with biofilms and mitigate their detrimental effects. This requires rather an integrated strategy than aiming to invent "one-shot" solutions. In this context, it helps to understand the biofilm way of life as a natural phenomenon. Biofilms are the oldest, most successful and most widely distributed form of life on earth, existing even in extreme environments and being highly resilient. Microorganisms in biofilms live in a self-produced matrix of extracellular polymeric substances (EPS) which allows them to develop emerging properties such as enhanced nutrient acquisition, synergistic microconsortia, enhanced tolerance to biocides and antibiotics, intense intercellular communication and cooperation. Transiently immobilized, biofilm organisms turn their matrix into an external digestion system by retaining complexed exoenzymes in the matrix. Biofilms grow even on traces of any biodegradable material, therefore, an effective anti-fouling strategy comprises to keep the system low in nutrients (good housekeeping), employing low-fouling, easy-to-clean surfaces, monitoring of biofilm development, allowing for early intervention, and acknowledging that cleaning can be more important than trying to kill biofilms, because cleaning does not cut the nutrient supply of survivors and dead biomass serves as an additional carbon source for "cannibalizing" survivors, supporting rapid after growth. An integrated concept is presented as the result of a long journey of the author through biofouling problems.

中文翻译:

我和生物污垢:我的斯德哥尔摩综合症与生物膜。

生物污染是微生物在表面上不希望的沉积和生长,形成生物膜。该定义是主观的和可操作的:并非每个生物膜都会造成生物污染-仅在超过给定的主观“干扰阈值”时,​​生物膜才会引起技术或医学问题。这些范围从在船体或管道上形成的粘泥层(增加了摩擦阻力)到分离膜(生物膜在上面增加了水力阻力)到热交换器(在热交换器中它们干扰热量的传输)到被侵蚀的生物膜细胞污染处理后的水,范围广泛。可能包含与卫生有关的微生物,最危险的是对植入物和导管上的生物膜的破坏,这些生物膜可能导致持续感染。反污垢研究的最大部分,通常是在短期实验中,专注于预防或限制主要微生物粘附。直觉上,这似乎是合乎逻辑的,但事实证明绝望的是。这是因为在开放获取微生物的技术系统中,所有表面迟早都会被殖民,这说明该研究的成功非常有限。结果,杀生物剂的使用仍然是抵抗持久性生物膜的主要工具。然而,就杀生物剂而言,这是昂贵的,它给工作材料施加压力,造成停工时间和环境破坏,并且通常使大部分生物膜留在原处,准备再生。为了真正解决生物污染问题,有必要学习如何与生物膜一起生活并减轻其有害影响。这需要一种综合策略,而不是旨在发明“一次性”解决方案。在这种情况下,它有助于将生物膜的生活方式理解为一种自然现象。生物膜是地球上最古老,最成功和分布最广泛的生命形式,即使存在于极端环境中也具有很高的弹性。生物膜中的微生物生活在细胞外聚合物(EPS)的自我产生的基质中,这使它们能够开发出新兴的特性,例如增强的养分获取,协同的微联盟,对杀生物剂和抗生素的耐受性增强,强烈的细胞间通讯与合作。暂时固定的生物膜生物通过在基质中保留复杂的外切酶,将其基质转变为外部消化系统。生物膜甚至会在任何可生物降解材料的痕迹上生长,因此,一个有效的防污策略包括保持系统的养分含量低(良好的内部管理),采用低污垢,易于清洁的表面,监测生物膜的形成,允许早期干预以及确认清洁比清洁更重要。试图杀死生物被膜,因为清洁并不能减少幸存者的营养供应,而死生物质又可以​​作为“食人族”幸存者的额外碳源,在生长后迅速生长。由于作者通过生物污垢问题的漫长旅程,因此提出了一个综合概念。因为清洁并不能减少幸存者的营养供应,而死生物质又可以​​作为“吞噬”幸存者的额外碳源,从而在生长后迅速生长。由于作者通过生物污垢问题的漫长旅程,因此提出了一个综合概念。因为清洁并不能减少幸存者的营养供应,而死生物质又可以​​作为“吞噬”幸存者的额外碳源,从而在生长后迅速生长。由于作者通过生物污垢问题的漫长旅程,因此提出了一个综合概念。
更新日期:2020-02-03
down
wechat
bug