当前位置: X-MOL 学术arXiv.cs.MS › 论文详情
lbmpy: A flexible code generation toolkit for highly efficient lattice Boltzmann simulations
arXiv - CS - Mathematical Software Pub Date : 2020-01-31 , DOI: arxiv-2001.11806
Martin Bauer; Harald Köstler; Ulrich Rüde

Lattice Boltzmann methods are a popular mesoscopic alternative to macroscopic computational fluid dynamics solvers. Many variants have been developed that vary in complexity, accuracy, and computational cost. Extensions are available to simulate multi-phase, multi-component, turbulent, or non-Newtonian flows. In this work we present lbmpy, a code generation package that supports a wide variety of different methods and provides a generic development environment for new schemes as well. A high-level domain-specific language allows the user to formulate, extend and test various lattice Boltzmann schemes. The method specification is represented in a symbolic intermediate representation. Transformations that operate on this intermediate representation optimize and parallelize the method, yielding highly efficient lattice Boltzmann compute kernels not only for single- and two-relaxation-time schemes but also for multi-relaxation-time, cumulant, and entropically stabilized methods. An integration into the HPC framework waLBerla makes massively parallel, distributed simulations possible, which is demonstrated through scaling experiments on the SuperMUC-NG supercomputing system
更新日期:2020-02-03

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug