当前位置: X-MOL 学术Opt. Laser Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding
Optics and Lasers in Engineering ( IF 4.6 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.optlaseng.2020.106043
Mingyang Zhang , Min Li , Shufeng Wang , Jing Chi , Liangshuai Ren , Min Fang , Chao Zhou

Abstract An MC (M: Ti,Nb) carbide-reinforced 316 L coating was synthesized in-situ via laser cladding. A strong relationship between the (Ti,Nb)C content and the microstructure and tribological properties of the resulting components was established. This relationship helped explain the influence of the (Ti,Nb)C content on the phase evolution, microstructure characteristics, and exothermic reaction behavior. It was found that the size and morphology of in-situ generated (Ti,Nb)C particles changed as the carbide content increased. When the MC carbide content increased from 2.5 wt% to 10 wt%, the morphology of in-situ generated (Ti,Nb)C evolved from irregular geometry particles, to spherical particles, and finally into near-regular geometry. When the carbide content reached 15 wt%, the (Ti,Nb)C particles displayed an equilibrium octahedral structure. The calculated formation enthalpy of MC carbides showed that the reaction enthalpy increased with the MC carbide content, which affected the dynamic temperature of the molten pool and eventually led to carbides with different crystal morphologies and sizes. Room-temperature dry sliding friction and wear tests showed that the submicron (Ti,Nb)C carbide reinforced (carbide content: 5 wt%) coating and 1.5 μm regular octahedral particle-reinforced coating (carbide content: 20 wt%) exhibited a lower friction coefficient and wear volume loss. Understanding the morphological evolution mechanism of (Ti,Nb)C and its corresponding tribological behavior will enable the development of guidelines to obtain (Ti,Nb)C/316 L metal matrix composite coatings produced by laser cladding.

中文翻译:

通过激光熔覆制备的原位 (Ti, Nb) C 增强 316 L 不锈钢基体的增强的耐磨性和微观结构演变的新见解

摘要 通过激光熔覆原位合成了MC (M: Ti, Nb) 碳化物增强316 L 涂层。(Ti, Nb) C 含量与所得部件的微观结构和摩擦学性能之间建立了密切的关系。这种关系有助于解释 (Ti, Nb) C 含量对相演变、微观结构特征和放热反应行为的影响。发现原位生成的 (Ti, Nb) C 颗粒的尺寸和形态随着碳化物含量的增加而变化。当 MC 碳化物含量从 2.5 wt% 增加到 10 wt% 时,原位生成的 (Ti, Nb) C 的形态从不规则几何形状的颗粒演变为球形颗粒,最后演变为近乎规则的几何形状。当碳化物含量达到 15 wt% 时,(Ti, Nb) C 颗粒显示出平衡八面体结构。MC碳化物的计算生成焓表明,反应焓随着MC碳化物含量的增加而增加,这影响熔池的动态温度并最终导致具有不同晶体形态和尺寸的碳化物。室温干滑动摩擦磨损试验表明,亚微米 (Ti, Nb) C 碳化物增强(碳化物含量:5 wt%)涂层和 1.5 μm 规则八面体颗粒增强涂层(碳化物含量:20 wt%)表现出较低的摩擦系数和磨损体积损失。了解 (Ti, Nb) C 的形态演变机制及其相应的摩擦学行为将有助于制定指南,以获得通过激光熔覆生产的 (Ti, Nb) C / 316 L 金属基复合涂层。
更新日期:2020-05-01
down
wechat
bug