当前位置: X-MOL 学术Coast. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An ISPH with k–ε closure for simulating turbulence under solitary waves
Coastal Engineering ( IF 4.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.coastaleng.2020.103657
Dong Wang , Philip L.-F. Liu

Abstract In this paper an Incompressible Smoothed Particle Hydrodynamics (ISPH) method solving the 2D RANS (Reynolds Averaged Navier-Stokes) equations with the k–e turbulence closure is constructed. In the present model, the concept of “massless ISPH” utilizing the definition of “particle density” (number of computational particles within unit volume) is stressed. The skills of this numerical model are tested by applying to two laboratory experiments: (1) A non-breaking solitary wave propagating over a bottom-mounted barrier and (2) a solitary wave breaking on a 1 on 50 slope. In the former case flow separation occurs behind the barrier as the wave crest passes by and a vortex is generated, which later interacts with free surface causing breaking. In the latter case wave breaking and bottom friction both generate significant turbulence. For both cases, the effects of initial seeding of turbulent kinetic energy, required in the k–e model, are studied and it is concluded that initial values of O (10−10) to O (10−8) m2/s2 should be used. An adaptive wall boundary condition for k–e turbulence model is employed to avoid the unrealistic production of turbulence near the wall boundary. The numerical results, in terms of free surface profile, mean velocity field, vorticity field, turbulent kinetic energy and turbulent shear stress, are compared with experimental data. Very reasonable agreement is observed. This paper presents the first comprehensively validated 2D ISPH model with the k–e turbulence closure, which can be applied to transient free surface wave problems.

中文翻译:

具有 k-ε 闭包的 ISPH 用于模拟孤立波下的湍流

摘要 本文构建了一种不可压缩平滑粒子流体动力学 (ISPH) 方法来求解具有 k-e 湍流闭合的 2D RANS(雷诺平均纳维-斯托克斯)方程。在本模型中,强调了利用“粒子密度”(单位体积内的计算粒子数)定义的“无质量 ISPH”的概念。通过应用于两个实验室实验来测试该数值模型的技能:(1)在底部安装的屏障上传播的不间断孤立波和(2)在 1 on 50 斜坡上破裂的孤立波。在前一种情况下,当波峰经过时会在屏障后面发生流动分离并产生涡流,涡流随后与自由表面相互作用导致破裂。在后一种情况下,波浪破碎和底部摩擦都会产生明显的湍流。对于这两种情况,研究了 k-e 模型所需的湍流动能初始种子的影响,得出的结论是 O (10-10) 至 O (10-8) m2/s2 的初始值应为用过的。k-e 湍流模型的自适应壁面边界条件被用来避免在壁面边界附近产生不切实际的湍流。将数值结果从自由面剖面、平均速度场、涡度场、湍动能和湍流剪应力等方面与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的具有 k-e 湍流闭合的二维 ISPH 模型,该模型可应用于瞬态自由表面波问题。研究并得出结论,应使用 O (10-10) 至 O (10-8) m2/s2 的初始值。k-e 湍流模型的自适应壁面边界条件被用来避免在壁面边界附近产生不切实际的湍流。将数值结果从自由面剖面、平均速度场、涡度场、湍动能和湍流剪应力等方面与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的具有 k-e 湍流闭合的二维 ISPH 模型,该模型可应用于瞬态自由表面波问题。研究并得出结论,应使用 O (10-10) 至 O (10-8) m2/s2 的初始值。k-e 湍流模型的自适应壁面边界条件被用来避免在壁面边界附近产生不切实际的湍流。将数值结果从自由面剖面、平均速度场、涡度场、湍动能和湍流剪应力等方面与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的具有 k-e 湍流闭合的二维 ISPH 模型,该模型可应用于瞬态自由表面波问题。将数值结果从自由面剖面、平均速度场、涡度场、湍动能和湍流剪应力等方面与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的具有 k-e 湍流闭合的二维 ISPH 模型,该模型可应用于瞬态自由表面波问题。将数值结果从自由面剖面、平均速度场、涡度场、湍动能和湍流剪应力等方面与实验数据进行了比较。观察到非常合理的协议。本文提出了第一个经过全面验证的具有 k-e 湍流闭合的二维 ISPH 模型,该模型可应用于瞬态自由表面波问题。
更新日期:2020-04-01
down
wechat
bug