当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Analysis of parameter uncertainty in model simulations of irrigated and rainfed agroecosystems
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-01-30 , DOI: 10.1016/j.envsoft.2020.104642
Yao Zhang; Mazdak Arabi; Keith Paustian

Crop water production functions (quantifying crop yield as a function of irrigation rate) can help in the design of management systems that reduce the water footprint. We examined the role of parameter uncertainties in characterizing production functions using the DayCent agroecosystem model. A global sensitivity analysis was conducted to identify the model parameters associated with the greatest uncertainties in model responses. Under both irrigated and non-irrigated conditions, growth/production-related parameters had relatively more impact on grain yield than did soil-related parameters. Under non-irrigated conditions, there was greater sensitivity to evapotranspiration related parameters. We then used the DREAM method, a Markov Chain-Monte Carlo (MCMC) Bayesian approach, to determine the posterior distributions of the selected parameters. The DREAM method produced good estimates for the posterior distribution of the critical parameters. The utility of water production functions as predictive tools to guide water management decisions is greatly enhanced by incorporating rigorous estimates of uncertainty.
更新日期:2020-01-31

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug