当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous effects of strain rate and temperature on mechanical response of fabricated Mg–SiC nanocomposite
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2019-07-26 , DOI: 10.1177/0021998319864629
K Rahmani 1 , GH Majzoobi 1 , A Atrian 2, 3
Affiliation  

Mg–SiC nanocomposite samples were fabricated using split Hopkinson pressure bar for different SiC volume fractions and under different temperature conditions. The microstructures and mechanical properties of the samples including microhardness and stress–strain curves were captured from quasi-static and dynamic tests carried out using Instron and split Hopkinson pressure bar, respectively. Nanocomposites were produced by hot and high-rate compaction method using split Hopkinson pressure bar. Temperature also significantly affects relative density and can lead to 2.5% increase in density. Adding SiC-reinforcing particles to samples increased their Vickers microhardness from 46 VH to 68 VH (45% increase) depending on the compaction temperature. X-ray diffraction analysis showed that by increasing temperature from 25℃ to 450℃, the Mg crystallite size increases from 37 nm to 72 nm and decreases the lattice strain from 45% to 30%. In quasi-static tests, the ultimate compressive strength for the compaction temperature of 450℃ was improved from 123% for Mg–0 vol.% SiC to 200% for the Mg–10 vol.% SiC samples compared with those of the compaction at room temperature. In dynamic tests, the ultimate strength for Mg–10 vol.% SiC sample compacted at high strain rate increased remarkably by 110% compared with that for Mg–0 vol.% SiC sample compacted at low strain rate.

中文翻译:

应变速率和温度对制备的 Mg-SiC 纳米复合材料机械响应的同时影响

Mg-SiC 纳米复合材料样品是在不同的 SiC 体积分数和不同的温度条件下使用分裂霍普金森压力棒制造的。样品的微观结构和机械性能,包括显微硬度和应力 - 应变曲线,分别从使用 Instron 和分体式霍普金森压力棒进行的准静态和动态测试中获取。纳米复合材料是通过使用分裂霍普金森压力棒的热和高速压实方法生产的。温度也会显着影响相对密度,并可能导致密度增加 2.5%。根据压实温度,向样品中添加 SiC 增强颗粒将其维氏显微硬度从 46 VH 增加到 68 VH(增加 45%)。X射线衍射分析表明,将温度从25℃升高到450℃,Mg 晶粒尺寸从 37 nm 增加到 72 nm,并将晶格应变从 45% 降低到 30%。在准静态试验中,压实温度为 450℃时的极限抗压强度从 Mg–0 vol.% SiC 的 123% 提高到 Mg–10 vol.% SiC 样品的 200%室内温度。在动态测试中,Mg-10 vol.% SiC 样品在高应变率下压实的极限强度与 Mg-0 vol.% SiC 样品在低应变率下压实的极限强度相比显着增加了 110%。
更新日期:2019-07-26
down
wechat
bug