当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging
Science Robotics ( IF 26.1 ) Pub Date : 2020-01-29 , DOI: 10.1126/scirobotics.aay9106
Clara Park 1 , Yiling Fan 1, 2 , Gregor Hager 3, 4 , Hyunwoo Yuk 1 , Manisha Singh 3, 5 , Allison Rojas 3 , Aamir Hameed 6, 7 , Mossab Saeed 2, 8 , Nikolay V Vasilyev 2, 8 , Terry W J Steele 5, 9 , Xuanhe Zhao 1, 10 , Christopher T Nguyen 2, 11, 12 , Ellen T Roche 1, 2, 3
Affiliation  

A biohybrid soft robotic heart mimics myocardial architecture and motion while preserving explanted intracardiac structures. The complex motion of the beating heart is accomplished by the spatial arrangement of contracting cardiomyocytes with varying orientation across the transmural layers, which is difficult to imitate in organic or synthetic models. High-fidelity testing of intracardiac devices requires anthropomorphic, dynamic cardiac models that represent this complex motion while maintaining the intricate anatomical structures inside the heart. In this work, we introduce a biorobotic hybrid heart that preserves organic intracardiac structures and mimics cardiac motion by replicating the cardiac myofiber architecture of the left ventricle. The heart model is composed of organic endocardial tissue from a preserved explanted heart with intact intracardiac structures and an active synthetic myocardium that drives the motion of the heart. Inspired by the helical ventricular myocardial band theory, we used diffusion tensor magnetic resonance imaging and tractography of an unraveled organic myocardial band to guide the design of individual soft robotic actuators in a synthetic myocardial band. The active soft tissue mimic was adhered to the organic endocardial tissue in a helical fashion using a custom-designed adhesive to form a flexible, conformable, and watertight organosynthetic interface. The resulting biorobotic hybrid heart simulates the contractile motion of the native heart, compared with in vivo and in silico heart models. In summary, we demonstrate a unique approach fabricating a biomimetic heart model with faithful representation of cardiac motion and endocardial tissue anatomy. These innovations represent important advances toward the unmet need for a high-fidelity in vitro cardiac simulator for preclinical testing of intracardiac devices.

中文翻译:


心脏扩散张量成像引导的增强仿生有机合成动态心脏模型



生物混合软机器人心脏模仿心肌结构和运动,同时保留外植的心内结构。跳动心脏的复杂运动是通过跨壁层上具有不同方向的收缩心肌细胞的空间排列来完成的,这在有机或合成模型中很难模仿。心内设备的高保真度测试需要拟人化的动态心脏模型来代表这种复杂的运动,同时保持心脏内部复杂的解剖结构。在这项工作中,我们介绍了一种生物机器人混合心脏,它保留有机心内结构并通过复制左心室的心肌纤维结构来模拟心脏运动。心脏模型由来自保存完好的摘除心脏的有机心内膜组织和驱动心脏运动的活性合成心肌组成,具有完整的心内结构。受螺旋心室心肌带理论的启发,我们使用扩散张量磁共振成像和未解开的有机心肌带的纤维束成像来指导合成心肌带中单个软机器人执行器的设计。使用定制设计的粘合剂将活性软组织模拟物以螺旋方式粘附到有机心内膜组织上,形成灵活、舒适且防水的有机合成界面。与体内和计算机心脏模型相比,由此产生的生物机器人混合心脏模拟了原生心脏的收缩运动。总之,我们展示了一种独特的方法来制造仿生心脏模型,忠实地表示心脏运动和心内膜组织解剖结构。 这些创新代表了对用于心脏内装置临床前测试的高保真体外心脏模拟器的未满足需求的重要进展。
更新日期:2020-01-29
down
wechat
bug