当前位置: X-MOL 学术ISME J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus.
The ISME Journal ( IF 10.8 ) Pub Date : 2020-01-28 , DOI: 10.1038/s41396-020-0594-6
Namil Lee 1 , Woori Kim 1 , Jinkyoo Chung 1 , Yongjae Lee 1 , Suhyung Cho 1 , Kyoung-Soon Jang 2, 3 , Sun Chang Kim 1, 4 , Bernhard Palsson 5, 6, 7 , Byung-Kwan Cho 1, 4, 7
Affiliation  

Microbial coculture to mimic the ecological habitat has been suggested as an approach to elucidate the effect of microbial interaction on secondary metabolite biosynthesis of Streptomyces. However, because of chemical complexity during coculture, underlying mechanisms are largely unknown. Here, we found that iron competition triggered antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. During coculture, M. xanthus enhanced the production of a siderophore, myxochelin, leading M. xanthus to dominate iron scavenging and S. coelicolor to experience iron-restricted conditions. This chemical competition, but not physical contact, activated the actinorhodin biosynthetic gene cluster and the branched-chain amino acid degradation pathway which imply the potential to produce precursors, along with activation of a novel actinorhodin export system. Furthermore, we found that iron restriction increased the expression of 21 secondary metabolite biosynthetic gene clusters (smBGCs) in other Streptomyces species. These findings suggested that the availability for key ions stimulates specific smBGCs, which had the potential to enhance secondary metabolite biosynthesis in Streptomyces.

中文翻译:

铁竞争与黄色葡萄球菌共培养过程中引发了天蓝色链霉菌中抗生素的生物合成。

微生物共培养以模仿生态栖息地已被建议为阐明微生物相互作用对链霉菌次生代谢产物生物合成的影响的方法。但是,由于共培养过程中化学物质的复杂性,其潜在机理在很大程度上尚不清楚。在这里,我们发现铁竞争与黄色粘球菌共培养期间引发了天蓝色链霉菌中抗生素的生物合成。在共培养过程中,黄单胞菌增强了铁载体,黏菌素的产生,导致黄单胞菌占主导地位,铁清除能力和沙门氏菌(S.coelicolor)处于铁限制条件。这种化学竞争(而非物理接触)激活了放线菌ho生物合成基因簇和支链氨基酸降解途径,这暗示了产生前体物质的潜力,以及激活新的放线菌素出口系统。此外,我们发现铁限制增加了其他链霉菌属物种中21个次级代谢产物生物合成基因簇(smBGCs)的表达。这些发现表明,关键离子的可利用性刺激了特定的smBGC,这可能增强链霉菌中次级代谢产物的生物合成。
更新日期:2020-01-29
down
wechat
bug