当前位置: X-MOL 学术Sports Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis.
Sports Medicine ( IF 9.3 ) Pub Date : 2020-06-01 , DOI: 10.1007/s40279-020-01258-z
Ummatul Siddique 1 , Simin Rahman 1 , Ashlyn K Frazer 2 , Alan J Pearce 3 , Glyn Howatson 4, 5 , Dawson J Kidgell 2
Affiliation  

BACKGROUND Resistance-training causes changes in the central nervous system (CNS); however, the sites of these adaptations remain unclear. OBJECTIVE To determine sites of neural adaptation to resistance-training by conducting a systematic review and meta-analysis on the cortical and subcortical responses to resistance-training. METHODS Evidence from randomized controlled trials (RCTs) that focused on neural adaptations to resistance-training was pooled to assess effect estimates for changes in strength, cortical, and subcortical adaptations. RESULTS The magnitude of strength gain in 30 RCTs (n = 623) reported a standardised mean difference (SMD) of 0.67 (95% CI 0.41, 0.94; P < 0.001) that measured at least one cortical/subcortical neural adaptation which included: motor-evoked potentials (MEP; 19 studies); silent period (SP; 7 studies); short-interval intracortical inhibition (SICI; 7 studies); cervicomedullary evoked potentials (CMEP; 1 study); transcranial magnetic stimulation voluntary activation (VATMS; 2 studies); H-reflex (10 studies); and V-wave amplitudes (5 studies). The MEP amplitude during voluntary contraction was greater following resistance-training (SMD 0.55; 95% CI 0.27, 0.84; P < 0.001, n = 271), but remained unchanged during rest (SMD 0.49; 95% CI -0.68, 1.66; P = 0.41, n = 114). Both SP (SMD 0.65; 95% CI 0.29, 1.01; P < 0.001, n = 184) and active SICI (SMD 0.68; 95% CI 0.14, 1.23; P = 0.01, n = 102) decreased, but resting SICI remained unchanged (SMD 0.26; 95% CI - 0.29, 0.81; P = 0.35, n = 52). Resistance-training improved neural drive as measured by V-wave amplitude (SMD 0.62; 95% CI 0.14, 1.10; P = 0.01, n = 101), but H-reflex at rest (SMD 0.16; 95% CI - 0.36, 0.68; P = 0.56; n = 57), during contraction (SMD 0.15; 95% CI - 0.18, 0.48; P = 0.38, n = 142) and VATMS (MD 1.41; 95% CI - 4.37, 7.20; P = 0.63, n = 44) remained unchanged. CONCLUSION There are subtle neural adaptations following resistance-training involving both cortical and subcortical adaptations that act to increase motoneurone activation and likely contribute to the training-related increase in muscle strength.

中文翻译:

确定抵抗训练的神经适应部位:系统评价和荟萃分析。

背景技术抗性训练引起中枢神经系统(CNS)的改变。但是,这些改编的地点仍不清楚。目的通过对皮层和皮层下抵抗训练的反应进行系统的回顾和荟萃分析,确定神经对抵抗训练的适应部位。方法汇集了集中于神经对抵抗训练的适应性随机对照试验(RCT)的证据,以评估强度,皮质和皮质下适应变化的效果评估。结果30个RCT(n = 623)的力量增加幅度报告了0.67(95%CI 0.41,0.94; P <0.001)的标准平均差(SMD),该均值测量了至少一个皮层/皮层下神经适应,包括:运动诱发电位(环保部; 19项研究);沉默期(SP; 7项研究);短间隔皮质内抑制(SICI; 7项研究);子宫颈的诱发电位(CMEP; 1项研究);经颅磁刺激自愿激活(VATMS; 2项研究);H-反射(10项研究); 和V波振幅(5个研究)。阻力训练后的自发收缩过程中的MEP幅度更大(SMD 0.55; 95%CI 0.27,0.84; P <0.001,n = 271),但在休息期间保持不变(SMD 0.49; 95%CI -0.68,1.66; P = 0.41,n = 114)。SP(SMD 0.65; 95%CI 0.29,1.01; P <0.001,n = 184)和活动SICI(SMD 0.68; 95%CI 0.14,1.23; P = 0.01,n = 102)均降低,但静止SICI保持不变(SMD 0.26; 95%CI-0.29,0.81; P = 0.35,n = 52)。通过V波振幅(SMD 0.62; 95%CI 0.14,1.10; P = 0.01,n = 101)进行阻力训练可以改善神经驱动,但是静止时H反射(SMD 0.16; 95%CI-0.36,0.68; P = 0.56;n = 57),收缩期间(SMD 0.15; 95%CI-0.18,0.48; P = 0.38,n = 142)和VATMS(MD 1.41; 95%CI-4.37,7.20; P = 0.63,n = 44)不变。结论在阻力训练后,皮层和皮层下的适应都有细微的神经适应,其作用是增加运动神经元的激活,并可能与训练有关的肌肉力量增加。
更新日期:2020-01-28
down
wechat
bug