当前位置: X-MOL 学术J. Microsc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Focused ion beam preparation of microbeams for in‐situ mechanical analysis of electroplated nanotwinned copper with probe type indenters
Journal of Microscopy ( IF 1.5 ) Pub Date : 2020-02-18 , DOI: 10.1111/jmi.12868
Stuart Robertson 1, 2 , Scott Doak 1 , Fu-Long Sun 3 , Zhi-Quan Liu 3, 4 , Changqing Liu 2 , Zhaoxia Zhou 1
Affiliation  

Summary A site‐specific xenon plasma focused ion beam preparation technique for microcantilever samples (1–20 µm width and 1:10 aspect ratio) is presented. The novelty of the methodology is the use of a chunk lift‐out onto a clean silicon wafer to facilitate easy access of a low‐cost probe type indenter which provides bending force measurement. The lift‐out method allows sufficient room for the indenter and a line of sight for the electron beam to enable displacement measurement. An electroplated nanotwinned copper (NTC) was cut to a 3 × 3 × 25 µm microbeam and in situ mechanically tested using the developed technique. It demonstrated measured values of Youngs modulus of 78.7 ± 11 GPa and flow stress of 0.80 ± 0.05 GPa, which is within the ranges reported in the literature. Lay Description In this paper a site specific method is present for making particularly small mechanical tests samples, of the order of 100th the size of a human hair. These small samples can then be used to determine the mechanical properties of the bulk material. Copper with a nano twinned grain structure is used as a test medium. Ion milling was used to cut the sample to shape and a micro probe was used for mechanical testing. Ion milling can cut away very small volumes of material as it accelerates ions at the surface of the sample, atomically machining the sample. Micro probes are a cost‐effective small‐scale load measurement devices, however, they require a large area for accessing the sample. The indenter requirements are a problem when making you samples with ion milling as ion millers are best at making small cuts. Our aim was to design a cutting strategy which reduces the amount of cutting required while allowing samples to be fabricated anywhere on the sample. We used a chunk lift out technique to remove a piece of material which is then welded to a wafer of silicon this gives sufficient space around the sample for ion milling and testing. The additional space allowed easy access for the probe. A 3 × 3 × 10 µm micro cantilever beam was cut out from copper, this beam was then bent. The force from bending and distance bent was measured and converted into Youngs modulus which is a measure of flexibility. The modulus value measured was comparable to the values reported in other papers.

中文翻译:

微束聚焦离子束制备,用于使用探针式压头对电镀纳米孪晶铜进行原位力学分析

总结 介绍了一种用于微悬臂梁样品(1–20 µm 宽度和 1:10 纵横比)的位点特定氙气等离子体聚焦离子束制备技术。该方法的新颖之处在于将块取出使用到干净的硅晶片上,以方便使用提供弯曲力测量的低成本探针式压头。提拉法为压头提供了足够的空间,并为电子束提供了视线,以实现位移测量。将电镀纳米孪晶铜 (NTC) 切割成 3 × 3 × 25 µm 微束,并使用开发的技术进行原位机械测试。它展示了 78.7 ± 11 GPa 的杨氏模量和 0.80 ± 0.05 GPa 的流动应力的测量值,这在文献报道的范围内。层描述 在这篇论文中,提出了一种特定地点的方法来制作特别小的机械测试样品,大约为人类头发的 100 分之一大小。然后可以使用这些小样本来确定散装材料的机械性能。具有纳米孪晶结构的铜用作测试介质。使用离子铣削将样品切割成一定形状,并使用微探针进行机械测试。离子铣削可以切掉非常小的材料,因为它会加速样品表面的离子,从而对样品进行原子加工。微探针是一种具有成本效益的小规模载荷测量装置,但是它们需要大面积来接触样品。使用离子铣削制作样品时,压头要求是一个问题,因为离子铣刀最擅长进行小切口。我们的目标是设计一种切割策略,减少所需的切割量,同时允许在样品的任何位置制造样品。我们使用大块剥离技术去除一块材料,然后将其焊接到硅晶片上,从而为样品周围提供足够的空间以进行离子研磨和测试。额外的空间允许轻松访问探头。从铜上切下一个 3 × 3 × 10 µm 的微型悬臂梁,然后将该梁弯曲。测量弯曲和距离弯曲产生的力并将其转换为杨氏模量,这是一种衡量柔韧性的指标。测量的模量值与其他论文中报道的值相当。我们使用大块剥离技术去除一块材料,然后将其焊接到硅晶片上,从而为样品周围提供足够的空间以进行离子研磨和测试。额外的空间允许轻松访问探头。从铜上切下一个 3 × 3 × 10 µm 的微型悬臂梁,然后将该梁弯曲。测量弯曲和距离弯曲产生的力并将其转换为杨氏模量,这是一种衡量柔韧性的指标。测量的模量值与其他论文中报道的值相当。我们使用大块剥离技术去除一块材料,然后将其焊接到硅晶片上,从而为样品周围提供足够的空间以进行离子研磨和测试。额外的空间允许轻松访问探头。从铜上切下一个 3 × 3 × 10 µm 的微型悬臂梁,然后将该梁弯曲。测量弯曲和距离弯曲产生的力并将其转换为杨氏模量,这是一种衡量柔韧性的指标。测量的模量值与其他论文中报道的值相当。测量弯曲和距离弯曲产生的力并将其转换为杨氏模量,这是一种衡量柔韧性的指标。测量的模量值与其他论文中报道的值相当。测量弯曲和距离弯曲产生的力并将其转换为杨氏模量,这是一种衡量柔韧性的指标。测量的模量值与其他论文中报道的值相当。
更新日期:2020-02-18
down
wechat
bug