当前位置: X-MOL 学术Chem. Eur. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic Insight into Energy-Transfer Dynamics and Color Tunability of Na4 CaSi3 O9 :Tb3+ ,Eu3+ for Warm White LEDs.
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2020-03-20 , DOI: 10.1002/chem.201905607
Jin He 1 , Cheng Yan 2 , Minmin Huang 1 , Rui Shi 3 , Yibo Chen 1 , Chris D Ling 2 , Zhao-Qing Liu 1
Affiliation  

In this work, a latent energy-transfer process in traditional Eu3+ ,Tb3+ -doped phosphors is proposed and a new class of Eu3+ ,Tb3+ -doped Na4 CaSi3 O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+ ,Tb3+ -doped phosphors, the as-synthesized Eu3+ ,Tb3+ -doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+ /Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+ -O2- charge-transfer energy, 4f-5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+ →Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+ , 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10 O17 :Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.

中文翻译:

Na4 CaSi3 O9:Tb3 +,Eu3 +用于暖白光LED的能量传递动力学和颜色可调性的机理研究。

在这项工作中,提出了在传统的Eu3 +,Tb3 +掺杂的磷光体中的潜能传递过程,并提出了新型的Eu3 +,Tb3 +掺杂的Na4 CaSi3 O9(NCSO)磷光体,其通过优化电子的发光衰减动力学实现。 -转移能量的过程。相对于其他Eu3 +,Tb3 +掺杂的荧光粉,合成后的Eu3 +,Tb3 +掺杂的NCSO荧光粉在受Tb3 + / Eu3 +掺杂比控制时,在UV激发下显示出从绿色到红色的大规模可调谐发射颜色。使用真空紫外(VUV)/ UV / Vis区域中的详细光谱测量来确定Eu3 + -O2-电荷转移能,4f-5d跃迁能以及带有不同4fN电子的Eu3 +和Tb3 +的4f激发多重峰的能量配置。通过结合适当的模型模拟,通过发光衰减动力学分析来阐明相关的能量转移机理,系统地研究了共掺杂样品中的Tb3 +→Eu3 +能量转移途径。为了证明其应用潜力,通过使用具有高热稳定性的黄色发光NCSO:0.03Tb3 +,0.05Eu3 +荧光粉和BaMgAl10 O17:Eu2 +荧光粉与近红外光相结合,成功制造了原型白光二极管(WLED)器件。 -UV芯片。这些发现为通过在实际应用中操纵能量转移过程开辟了一条新途径,以实现和开发多功能高性能荧光粉。结合适当的模型仿真,通过使用发光衰减动力学分析来阐明相关的能量传递机制。为了证明其应用潜力,通过使用具有高热稳定性的黄色发光NCSO:0.03Tb3 +,0.05Eu3 +荧光粉和BaMgAl10 O17:Eu2 +荧光粉与近红外光相结合,成功制造了原型白光二极管(WLED)器件。 -UV芯片。这些发现为通过在实际应用中操纵能量转移过程开辟了一条新途径,以实现和开发多功能高性能荧光粉。结合适当的模型仿真,通过使用发光衰减动力学分析来阐明相关的能量传递机制。为了证明其应用潜力,通过使用具有高热稳定性的黄色发光NCSO:0.03Tb3 +,0.05Eu3 +荧光粉和BaMgAl10 O17:Eu2 +荧光粉与近红外光相结合,成功制造了原型白光二极管(WLED)器件。 -UV芯片。这些发现为通过在实际应用中操纵能量转移过程开辟了一条新途径,以实现和开发多功能高性能荧光粉。具有高热稳定性的05Eu3 +荧光粉和BaMgAl10 O17:Eu2 +荧光粉与近紫外芯片组合。这些发现为通过在实际应用中操纵能量转移过程开辟了一条新途径,以实现和开发多功能高性能荧光粉。具有高热稳定性的05Eu3 +荧光粉和BaMgAl10 O17:Eu2 +荧光粉与近紫外芯片组合。这些发现为通过在实际应用中操纵能量转移过程开辟了一条新途径,以实现和开发多功能高性能荧光粉。
更新日期:2020-04-22
down
wechat
bug