当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological Responses to Climate Change and Nanoplastics Are Altered in Concert: Full-Factor Screening Reveals Effects of Multiple Stressors on Primary Producers.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-02-07 , DOI: 10.1021/acs.est.9b07040
Yamin Yang 1 , Yawen Guo 1 , Anna M O'Brien 2 , Tiago F Lins 1 , Chelsea M Rochman 2 , David Sinton 1
Affiliation  

While the combined presence of global climate change and nanosized plastic particle (i.e., nanoplastic) pollution is clear, the potential for interactions between climate-change-shifting environmental parameters and nanoplastics is largely unknown. Here, we aim to understand how nanoplastics will affect species in concert with climate change in freshwater ecosystems. We utilized a high-throughput full-factorial experimental system and the model photosynthetic microorganism Scenedesmus obliquus to capture the complexity of interacting environmental stressors, including CO2, temperature, light, and nanoplastics. Under a massive number of conditions (2000+), we consistently found concentration-dependent inhibition of algal growth in the presence of polystyrene nanoparticles, highlighting a threat to primary productivity in aquatic ecosystems. Our high-treatment experiment also identified crucial interactions between nanoplastics and climate change. We found that relatively low temperature and ambient CO2 exacerbated damage induced by nanoplastics, while elevated CO2 and warmer temperatures reflecting climate change scenarios somewhat attenuated nanoplastic toxicity. Further, we revealed that nanoplastics may modulate light responses, implying that risks of nanoplastic pollution may also depend on local irradiation conditions. Our study highlights the coupled impacts of nanoplastics and climate change, as well as the value of full-factorial screening in predicting biological responses to multifaceted global change.

中文翻译:

对气候变化和纳米塑料的生物学反应也发生了变化:全要素筛选揭示了多种应激源对初级生产者的影响。

尽管全球气候变化和纳米级塑料颗粒(即,纳米塑料)污染的结合存在是显而易见的,但气候变化转移环境参数与纳米塑料之间相互作用的潜力仍然未知。在这里,我们旨在了解纳米塑料将如何与淡水生态系统中的气候变化相协调地影响物种。我们利用了高通量的全要素实验系统和模型光合微生物斜球藻(Scenedesmus obliquus)来捕捉相互作用的环境胁迫因素的复杂性,包括二氧化碳,温度,光和纳米塑料。在大量条件下(2000多个),我们始终发现聚苯乙烯纳米颗粒存在下藻类生长的浓度依赖性抑制作用,突显了对水生生态系统初级生产力的威胁。我们的高级实验还确定了纳米塑料与气候变化之间的关键相互作用。我们发现相对较低的温度和环境CO2加剧了纳米塑料引起的破坏,而升高的CO2和较暖的温度反映了气候变化情况,在某种程度上减弱了纳米塑料的毒性。此外,我们发现纳米塑料可能会调节光响应,这意味着纳米塑料污染的风险也可能取决于局部照射条件。我们的研究强调了纳米塑料和气候变化的耦合影响,以及全因子筛选在预测对多方面全球变化的生物学反应中的价值。我们发现相对较低的温度和环境CO2加剧了纳米塑料引起的破坏,而升高的CO2和较暖的温度反映了气候变化情况,在某种程度上减弱了纳米塑料的毒性。此外,我们发现纳米塑料可能会调节光响应,这意味着纳米塑料污染的风险也可能取决于局部照射条件。我们的研究强调了纳米塑料和气候变化的耦合影响,以及全因子筛选在预测对多方面全球变化的生物学反应中的价值。我们发现相对较低的温度和环境CO2加剧了纳米塑料引起的破坏,而升高的CO2和较暖的温度反映了气候变化情况,在某种程度上减弱了纳米塑料的毒性。此外,我们发现纳米塑料可能会调节光响应,这意味着纳米塑料污染的风险也可能取决于局部照射条件。我们的研究强调了纳米塑料和气候变化的耦合影响,以及全因子筛选在预测对多方面全球变化的生物学反应中的价值。暗示纳米塑料污染的风险也可能取决于局部照射条件。我们的研究强调了纳米塑料和气候变化的耦合影响,以及全因子筛选在预测对多方面全球变化的生物学反应中的价值。暗示纳米塑料污染的风险也可能取决于局部照射条件。我们的研究强调了纳米塑料和气候变化的耦合影响,以及全因子筛选在预测对多方面全球变化的生物学反应中的价值。
更新日期:2020-02-07
down
wechat
bug