当前位置: X-MOL 学术J. High Energy Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
4d N$$ \mathcal{N} $$ = 1 from 6d D-type N$$ \mathcal{N} $$ = (1, 0)
Journal of High Energy Physics ( IF 5.4 ) Pub Date : 2020-01-01 , DOI: 10.1007/jhep01(2020)152
Jin Chen , Babak Haghighat , Shuwei Liu , Marcus Sperling

Compactifications of 6d $$ \mathcal{N} $$ = (1, 0) SCFTs give rise to new 4d $$ \mathcal{N} $$ = 1 SCFTs and shed light on interesting dualities between such theories. In this paper we continue exploring this line of research by extending the class of compactified 6d theories to the D- type case. The simplest such 6d theory arises from D5 branes probing D-type singularities. Equivalently, this theory can be obtained from an F-theory compactification using −2- curves intersecting according to a D-type quiver. Our approach is two-fold. We start by compactifying the 6d SCFT on a Riemann surface and compute the central charges of the resulting 4d theory by integrating the 6d anomaly polynomial over the Riemann surface. As a second step, in order to find candidate 4d UV Lagrangians, there is an intermediate 5d theory that serves to construct 4d domain walls. These can be used as building blocks to obtain torus compactifications. In contrast to the A-type case, the vanishing of anomalies in the 4d theory turns out to be very restrictive and constraints the choices of gauge nodes and matter content severely. As a consequence, in this paper one has to resort to non- maximal boundary conditions for the 4d domain walls. However, the comparison to the 6d theory compactified on the Riemann surface becomes less tractable.

中文翻译:

4d N$$ \mathcal{N} $$ = 1 来自 6d D 型 N$$ \mathcal{N} $$ = (1, 0)

6d $$ \mathcal{N} $$ = (1, 0) SCFT 的紧缩产生了新的 4d $$ \mathcal{N} $$ = 1 SCFT,并阐明了这些理论之间有趣的对偶性。在本文中,我们通过将紧凑化 6d 理论类扩展到 D 型情况来继续探索这一研究方向。最简单的这种 6d 理论源于 D5 膜探测 D 型奇点。等效地,该理论可以从使用根据 D 型箭袋相交的 -2- 曲线的 F 理论紧缩获得。我们的方法有两个方面。我们首先在黎曼曲面上压缩 6d SCFT,并通过在黎曼曲面上对 6d 异常多项式进行积分来计算所得 4d 理论的中心电荷。第二步,为了找到候选的 4d UV Lagrangian,有一个中间 5d 理论用于构建 4d 畴壁。这些可以用作构建块以获得环面压缩。与 A 型情况相反,4d 理论中的异常消失被证明是非常严格的,并且严重限制了规范节点和物质含量的选择。因此,在本文中,必须对 4d 畴壁求助于非最大边界条件。然而,与在黎曼曲面上压缩的 6d 理论的比较变得不太容易处理。在本文中,必须对 4d 畴壁诉诸非最大边界条件。然而,与在黎曼曲面上压缩的 6d 理论的比较变得不太容易处理。在本文中,必须对 4d 畴壁诉诸非最大边界条件。然而,与在黎曼曲面上压缩的 6d 理论的比较变得不太容易处理。
更新日期:2020-01-01
down
wechat
bug