当前位置: X-MOL 学术Microbiol. Res. › 论文详情
Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48
Microbiological Research ( IF 3.701 ) Pub Date : 2020-01-25 , DOI: 10.1016/j.micres.2020.126422
H.G. Gowtham; S. Brijesh Singh; M. Murali; N. Shilpa; Melvin Prasad; Mohammed Aiyaz; K.N. Amruthesh; S.R. Niranjana

A total of ten 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR isolates were selected and evaluated for the induction of drought stress tolerance in tomato. Among the selected PGPR, maximum seed (laboratory) and plant growth promotion (greenhouse) was observed in tomato seeds bacterized with Bacillus subtilis Rhizo SF 48. The genomic study confirmed the presence of ACC deaminase gene in Rhizo SF 48 and the obtained sequence was deposited to the NCBI database with the Accession No. MK652706. The tomato plants grown upon treatment with Rhizo SF 48 significantly enhanced plant growth even after exposing to different levels of drought stress as compared to stress induced control plants. About 7.5% and 38% increase in RWC were observed in Rhizo SF 48 treated tomato plants grown under well-watered and stress conditions (S4) compared to their control plants, respectively. An increase of 0.76, 0.23 and 0.78 fold in proline, SOD and APX activity and a decrease of 0.3 fold in MDA and H2O2 contents were observed in Rhizo SF 48 treated plants compared to control plants grown under S4 conditions. The histo-chemical studies showed lower accumulations of H2O2 and superoxide anion in the leaves of Rhizo SF 48 treated plants under drought stress, which was in confirmation with the quantification results of H2O2 and SOD. The qRT-PCR studies on drought (Le25) and ethylene responsive factor (SlERF84) marker genes showed that a significant decrease of 0.75 and 0.81 folds, respectively in Le25 and SlERF84 accumulation was observed in Rhizo SF 48 treated plants compared to untreated plants grown under S4 conditions. From the results, it can be attributed that ACC deaminase producing Rhizo SF 48 was able to protect tomato plants against oxidative damage caused due to drought stress and enhanced plant growth promotion. It can be concluded that ACC deaminase producing Rhizo SF 48 can serve as a useful bio-inoculant for sustainable tomato production in arid and semi-arid regions with water deficit.
更新日期:2020-01-26

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug