当前位置: X-MOL 学术Plant Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications.
The Plant Cell ( IF 10.0 ) Pub Date : 2020-01-06 , DOI: 10.1105/tpc.19.00535
Ian Max Møller 1 , Abir U Igamberdiev 2 , Natalia V Bykova 3 , Iris Finkemeier 4 , Allan G Rasmusson 5 , Markus Schwarzländer 6
Affiliation  

Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.

中文翻译:


基质氧化还原生理学通过翻译后蛋白质修饰控制植物线粒体代谢的调节。



线粒体作为植物代谢的枢纽。氧化磷酸化产生 ATP,但它也是许多代谢途径所需的中心高容量电子汇,必须灵活协调和整合。在这里,我们回顾了氧化还原相关翻译后蛋白修饰(PTM)在线粒体代谢调节中的关键作用。我们讨论几个主要概念。首先,线粒体基质中的主要氧化还原对(NAD、NADP、硫氧还蛋白、谷胱甘肽和抗坏血酸)处于动力学稳态而不是热力学平衡。其次,靶向蛋白质组学已经产生了一长串可能受 Cys 氧化/硫氧还蛋白、Met-SO 形成、磷酸化或 Lys 乙酰化调节的蛋白质,但我们目前只了解其中一些 PTM 的功能重要性。一些位点修饰可能代表由虚假反应引起的分子噪音。第三,同一蛋白质或同一代谢途径中不同蛋白质上的不同 PTM 可以相互作用,从而微调代谢调节。第四,PTM 参与修复应激引起的损伤(例如,通过减少 Met 和 Cys 氧化产物)以及调整代谢功能以响应环境变化,例如光辐照度或氧气可用性的变化。最后,PTM 形成一个多维调控系统,提供线粒体协调所需的速度和灵活性,远远超出仅通过核基因表达变化提供的速度和灵活性。
更新日期:2020-03-03
down
wechat
bug