当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants.
Water Research ( IF 11.4 ) Pub Date : 2020-01-25 , DOI: 10.1016/j.watres.2020.115540
Yu Miao 1 , Nicholas W Johnson 1 , Thien Phan 1 , Kimberly Heck 2 , Phillip B Gedalanga 3 , Xiaoru Zheng 4 , David Adamson 5 , Charles Newell 5 , Michael S Wong 2 , Shaily Mahendra 1
Affiliation  

Microbial community dynamics were characterized following combined catalysis and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Although a few specific bacterial taxa are capable of removing 1,4-dioxane and individual CVOCs, many microorganisms are inhibited when these contaminants are present in mixtures. Chemical catalysis by tungstated zirconia (WOx/ZrO2) and hydrogen peroxide (H2O2) as a non-selective treatment was designed to achieve nearly 20% 1,4-dioxane and over 60% trichloroethene and 50% dichloroethene removals. Post-catalysis, bioaugmentation with 1,4-dioxane metabolizing bacterial strain,Pseudonocardia dioxanivorans CB1190, removed the remaining 1,4-dioxane. The evolution of the microbial community under different conditions was time-dependent but relatively independent of the concentrations of contaminants. The compositions of microbiomes tended to be similar regardless of complex contaminant mixtures during the biodegradation phase, indicating a r-K strategy transition attributed to the shock experienced during catalysis and the subsequent incubation. The originally dominant genera Pseudomonas and Ralstonia were sensitive to catalytic oxidation, and were overwhelmed by Sphingomonas, Rhodococcus, and other catalyst-tolerant microbes, but microbes capable of biodegradation of organics thrived during the incubation. Methane metabolism, chloroalkane-, and chloroalkene degradation pathways appeared to be responsible for CVOC degradation, based on the identifications of haloacetate dehalogenases, 2-haloacid dehalogenases, and cytochrome P450 family. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase that were in line with shifting predominant genera, confirming the deterministic processes guiding the microbial assembly. Collectively, this study demonstrated that catalysis followed by bioaugmentation is an effective treatment for 1,4-dioxane in the presence of high CVOC concentrations, and it enhanced our understanding of microbial ecological impacts resulting from abiotic-biological treatment trains. These results will be valuable for predicting treatment synergies that lead to cost savings and improve remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.

中文翻译:

监测,评估和预测1,4-二恶烷和共污染物耦合催化和生物降解中的微生物迁移。

在实验室缩影中,结合1,4-二恶烷和氯化挥发性有机化合物(CVOC)混合物的催化和生物降解处理组合对微生物群落动力学进行了表征。尽管一些特定的细菌类群能够去除1,4-二恶烷和单个CVOC,但是当这些污染物存在于混合物中时,许多微生物会受到抑制。钨酸氧化锆(WOx / ZrO2)和过氧化氢(H2O2)作为非选择性处理的化学催化设计为实现近20%的1,4-二恶烷和超过60%的三氯乙烯和50%的二氯乙烯去除。催化后,用1,4-二恶烷代谢细菌菌株假单胞菌二恶anivorans CB1190进行生物强化,除去了剩余的1,4-二恶烷。在不同条件下,微生物群落的演变是时间依赖性的,但与污染物的浓度相对无关。无论生物降解阶段中复杂的污染物混合物如何,微生物群落的组成都趋于相似,这表明归因于催化和随后孵育过程中的冲击的rK策略转变。最初的优势属假单胞菌属和Ralstonia属对催化氧化敏感,并被鞘氨醇单胞菌,红球菌和其他耐催化剂的微生物淹没,但在培养过程中能够繁殖有机物的微生物得以繁衍。根据卤代乙酸盐脱卤酶的鉴定,甲烷的代谢,氯代烷烃和氯代烷烃的降解途径似乎是造成CVOC降解的原因,2-卤代酸脱卤酶和细胞色素P450家族。网络分析突出显示了潜在的种间竞争或共生关系,以及生物降解阶段中微生物群落的动态与主要属的转变相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。和细胞色素P450家族。网络分析突出显示了潜在的种间竞争或共生关系,以及生物降解阶段中微生物群落的动态与主要属的转变相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。和细胞色素P450家族。网络分析突出显示了潜在的种间竞争或共生关系,以及生物降解阶段中微生物群落的动态与主要属的转变相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。网络分析突出显示了潜在的种间竞争或共生关系,以及生物降解阶段中微生物群落的动态与主要属的转变相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。网络分析突出显示了潜在的种间竞争或共生关系,以及生物降解阶段中微生物群落的动态与主要属的转变相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。微生物种群在生物降解阶段的动态和动态与主要属的变化相一致,证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。微生物种群在生物降解阶段的动态和动态与主要属的变化相一致,这证实了指导微生物组装的确定性过程。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。总体而言,这项研究表明,在高CVOC浓度下,催化然后进行生物强化是一种有效的1,4-二恶烷处理方法,它增强了我们对非生物-生物处理技术对微生物生态影响的理解。这些结果对于预测可在短期积极的补救以及对环境微生物群落的长期改变中节省成本并改善补救效果的治疗协同作用具有宝贵的价值。
更新日期:2020-01-26
down
wechat
bug