当前位置: X-MOL 学术Prog. Org. Coat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling the origin of the anti-fogging performance of plasma-coated glass: Role of the structure and the chemistry of siloxane precursors
Progress in Organic Coatings ( IF 6.5 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.porgcoat.2019.105401
Iván Rodríguez Durán , Jacopo Profili , Luc Stafford , Gaétan Laroche

Abstract The application of (super)hydrophilic coatings in sectors of activity concerned by fogging, such as the food industry, the architectural sector, and medicine has attracted enormous attention over the past few years. However, despite this interest, most of the coating deposition techniques used thus far are not suitable for large-scale production because of their multistep nature. In this regard, the use of atmospheric pressure dielectric barrier discharges (AP-DBD) operated under a controlled N2/N2O atmosphere offers a promising alternative to conventional deposition techniques for the fabrication of anti-fogging coatings. Using this one-step coating approach, four siloxane precursors with different structures and different number of Si―H and Si−CH3 groups; namely, 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane (OMCTS), 1,1,3,3-tetramethyldisiloxane (TMDSO), and hexamethyldisiloxane (HMDSO) were deposited on glass samples. Because of their extreme wetting behavior (WCA O, O C O, and Si OH groups, the relatively high surface roughness of TMCTS-coated glass, compared with that of OMCTS-, TMDSO-, or HMDSO-coated glass, accounted for its superior visual characteristics when exposed to water vapor at 80 °C. These results allow us to confidently conclude that the cyclic structure of TMCTS in conjunction with the high reactivity of the Si-H bonds is responsible for the observed anti-fogging effect.

中文翻译:

揭示等离子镀膜玻璃防雾性能的起源:硅氧烷前体的结构和化学作用

摘要 在过去几年中,(超)亲水涂层在与雾化相关的活动领域的应用,如食品工业、建筑业和医药业引起了极大的关注。然而,尽管有这种兴趣,但迄今为止使用的大多数涂层沉积技术由于其多步骤性质而不适合大规模生产。在这方面,使用在受控 N2/N2O 气氛下操作的大气压介质阻挡放电 (AP-DBD) 为制造防雾涂层的传统沉积技术提供了有希望的替代方案。使用这种一步涂覆方法,四种不同结构和不同数量的 Si-H 和 Si-CH3 基团的硅氧烷前体;即,1,3,5,7-四甲基环四硅氧烷(TMCTS),八甲基环四硅氧烷 (OMCTS)、1,1,3,3-四甲基二硅氧烷 (TMDSO) 和六甲基二硅氧烷 (HMDSO) 沉积在玻璃样品上。由于它们的极端润湿行为(WCA O、OCO 和 Si OH 基团,与 OMCTS-、TMDSO- 或 HMDSO 涂层玻璃相比,TMCTS 涂层玻璃具有相对较高的表面粗糙度,这是其卓越的视觉特性的原因)当暴露在 80 °C 的水蒸气中时。这些结果使我们能够自信地得出结论,TMCTS 的环状结构与 Si-H 键的高反应性是观察到的防雾效果的原因。与 OMCTS、TMDSO 或 HMDSO 涂层玻璃相比,TMCTS 涂层玻璃的表面粗糙度相对较高,因此当暴露于 80°C 的水蒸气时,其具有优越的视觉特性。这些结果使我们能够自信地得出结论,TMCTS 的环状结构与 Si-H 键的高反应性是观察到的防雾效果的原因。与 OMCTS、TMDSO 或 HMDSO 涂层玻璃相比,TMCTS 涂层玻璃的表面粗糙度相对较高,因此当暴露于 80°C 的水蒸气时,其具有优异的视觉特性。这些结果使我们能够自信地得出结论,TMCTS 的环状结构与 Si-H 键的高反应性是观察到的防雾效果的原因。
更新日期:2020-04-01
down
wechat
bug