当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology
Fuel ( IF 6.7 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.fuel.2020.117072
Medhat Elkelawy , Hagar Alm-Eldin Bastawissi , Khaled Khodary Esmaeil , Ahmed Mohamed Radwan , Hitesh Panchal , Kishor Kumar Sadasivuni , Muthusamy Suresh , Mohammad Israr

Abstract Production of methyl ester from sunflower and soybean oil mixture is performed throughout a catalyzed transesterification procedure. The significance of the four reaction parameters such as methanol to oil ratio, catalyst concentration, mixing speed, and reaction time and their combined effect on biodiesel yield is investigated through twenty-nine of the pre-designed and performed experiments. Box-Behnken design (BBD) based on response surface methodology (RSM) was applied for process optimization. A quadratic regression model was established for biodiesel yield prediction with a coefficient of determination R2 of 0.9861. An maximum biodiesel yield of 93.38% is accomplished at 203.5:1 ml:l methanol to oil ratio, 0.57 wt% catalyst concentration, 52 min reaction time and 530 rpm mixing. Obtained results show that there is a superior compatibility among the calculated yield of 93.38% and the experimental data of 93.2%. The estimated biodiesel fuel properties met with the American society for testing and materials (ASTM) D6751 standards. Engine operating parameters optimization have been executed using central composite design method (CCD) to achieve an optimum break thermal efficiency of a lone cylinder DI-engine fueled by biodiesel/diesel mixtures. Engine input parameters were considered as engine load and blends percentage for the optimization of engine response represented in break thermal efficiency (BTE), unburned hydrocarbon (UHC), and Nitrogen oxide (NOx) emissions. Examination of inconsistency (analysis of variance) ANOVA indicated that the quadratic representation were statistically important. RSM optimizer results indicated that the best possible values of BTE, UHC, and NOx were 13.656%, 120.7748 ppm, and 234.8926 ppm, respectively, at the maximum value of biodiesel mixture of 70% and break power of 2.05 kW. A validation test was performed and the error percentage is found to be within the range of 5%. The error percentage for BTE, UHC, and NOx was found to be 3.34%, 1.35%, and 2.31%, respectively.

中文翻译:

用向日葵油和豆油生产生物柴油的最大化以及通过响应面方法预测柴油发动机性能和排放特性

摘要 从向日葵和大豆油混合物生产甲酯是在整个催化酯交换过程中进行的。通过 29 个预先设计和执行的实验研究了四个反应参数(例如甲醇与油的比率、催化剂浓度、混合速度和反应时间)的重要性及其对生物柴油产量的综合影响。基于响应面方法 (RSM) 的 Box-Behnken 设计 (BBD) 被应用于工艺优化。建立了生物柴油产量预测的二次回归模型,确定系数R2为0.9861。在 203.5:1 ml:l 的甲醇与油比、0.57 wt% 的催化剂浓度、52 分钟的反应时间和 530 rpm 的混合条件下,实现了 93.38% 的最大生物柴油收率。所得结果表明,计算收率93.38%与实验数据93.2%之间具有良好的相容性。估计的生物柴油燃料特性符合美国材料试验协会 (ASTM) D6751 标准。使用中央复合设计方法 (CCD) 执行发动机运行参数优化,以实现以生物柴油/柴油混合物为燃料的单缸 DI 发动机的最佳制动热效率。发动机输入参数被视为发动机负载和混合百分比,用于优化发动机响应,以断裂热效率 (BTE)、未燃烧的碳氢化合物 (UHC) 和氮氧化物 (NOx) 排放表示。不一致性检查(方差分析)方差分析表明二次表示在统计上很重要。RSM 优化器结果表明,BTE、UHC 和 NOx 的最佳可能值分别为 13.656%、120.7748 ppm 和 234.8926 ppm,其中生物柴油混合物的最大值为 70%,破坏功率为 2.05 kW。进行了验证测试,发现错误百分比在 5% 的范围内。BTE、UHC 和 NOx 的误差百分比分别为 3.34%、1.35% 和 2.31%。
更新日期:2020-04-01
down
wechat
bug