当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy
Science ( IF 44.7 ) Pub Date : 2020-01-23 , DOI: 10.1126/science.aay2474
Wentao Yuan 1 , Beien Zhu 2, 3 , Xiao-Yan Li 2, 4 , Thomas W Hansen 5 , Yang Ou 1 , Ke Fang 1 , Hangsheng Yang 1 , Ze Zhang 1 , Jakob B Wagner 5 , Yi Gao 2, 3 , Yong Wang 1
Affiliation  

Imaging reactive surface water Recent developments in transmission electron microscopy (TEM) have enabled imaging of single atoms, but adsorbed gas molecules have proven more challenging because of a lack of sufficient image contrast. Yuan et al. adsorbed water and carbon monoxide (CO) on a reconstructed nanocrystalline anatase titanium dioxide (TiO2) surface that has protruding TiO3 ridges every four unit cells, which provide regions of distinct contrast. Water adsorption on this surface during environmental TEM experiments led to the formation of twinned protrusions. These structures developed dynamic contrast as the water reacted with coexposed CO to form hydrogen and carbon dioxide. Science, this issue p. 428 The adsorption of water on a nanocrystalline anatase surface and its reaction with carbon monoxide are visualized. Imaging a reaction taking place at the molecular level could provide direct information for understanding the catalytic reaction mechanism. We used in situ environmental transmission electron microscopy and a nanocrystalline anatase titanium dioxide (001) surface with (1 × 4) reconstruction as a catalyst, which provided highly ordered four-coordinated titanium “active rows” to realize real-time monitoring of water molecules dissociating and reacting on the catalyst surface. The twin-protrusion configuration of adsorbed water was observed. During the water–gas shift reaction, dynamic changes in these structures were visualized on these active rows at the molecular level.

中文翻译:

使用透射电子显微镜观察在 TiO2 活性位点反应的 H2O 分子

对反应性地表水进行成像 最近透射电子显微镜 (TEM) 的发展使单个原子的成像成为可能,但由于缺乏足够的图像对比度,吸附的气体分子已被证明更具挑战性。袁等人。在重建的纳米晶锐钛矿二氧化钛 (TiO2) 表面上吸附水和一氧化碳 (CO),该表面每四个晶胞有一个突出的 TiO3 脊,提供明显对比的区域。在环境 TEM 实验期间,该表面上的水吸附导致孪晶突起的形成。随着水与共同暴露的 CO 反应形成氢气和二氧化碳,这些结构形成了动态对比。科学,这个问题 p。428 水在纳米晶锐钛矿表面的吸附及其与一氧化碳的反应可视化。在分子水平上对发生的反应进行成像可以为理解催化反应机理提供直接信息。我们使用原位环境透射电子显微镜和具有(1×4)重构的纳米晶锐钛矿二氧化钛(001)表面作为催化剂,提供高度有序的四配位钛“活性行”,实现水分子的实时监测离解并在催化剂表面反应。观察到吸附水的双突起结构。在水煤气变换反应期间,这些结构的动态变化在分子水平上的这些活性行上可视化。我们使用原位环境透射电子显微镜和具有(1×4)重构的纳米晶锐钛矿二氧化钛(001)表面作为催化剂,提供高度有序的四配位钛“活性行”,实现水分子的实时监测离解并在催化剂表面反应。观察到吸附水的双突起结构。在水煤气变换反应期间,这些结构的动态变化在分子水平上的这些活性行上可视化。我们使用原位环境透射电子显微镜和具有(1×4)重构的纳米晶锐钛矿二氧化钛(001)表面作为催化剂,提供高度有序的四配位钛“活性行”,实现水分子的实时监测离解并在催化剂表面反应。观察到吸附水的双突起结构。在水煤气变换反应期间,这些结构的动态变化在分子水平上的这些活性行上可视化。观察到吸附水的双突起结构。在水煤气变换反应期间,这些结构的动态变化在分子水平上的这些活性行上可视化。观察到吸附水的双突起结构。在水煤气变换反应期间,这些结构的动态变化在分子水平上的这些活性行上可视化。
更新日期:2020-01-23
down
wechat
bug