当前位置: X-MOL 学术ChemPhysChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor.
ChemPhysChem ( IF 2.3 ) Pub Date : 2020-02-03 , DOI: 10.1002/cphc.201901179
Andy S Sardjan 1 , Palas Roy 2 , Wojciech Danowski 3 , Giovanni Bressan 2 , Laura Nunes Dos Santos Comprido 1 , Wesley R Browne 1 , Ben L Feringa 3 , Stephen R Meech 2
Affiliation  

Efficient photomolecular motors will be critical elements in the design and development of molecular machines. Optimisation of the quantum yield for photoisomerisation requires a detailed understanding of molecular dynamics in the excited electronic state. Here we probe the primary photophysical processes in the archetypal first generation photomolecular motor, with sub‐50 fs time resolved fluorescence spectroscopy. A bimodal relaxation is observed with a 100 fs relaxation of the Franck‐Condon state to populate a red‐shifted state with a reduced transition moment, which then undergoes multi‐exponential decay on a picosecond timescale. Oscillations due to the excitation of vibrational coherences in the S1 state are seen to survive the ultrafast structural relaxation. The picosecond relaxation reveals a strong solvent friction effect which is thus ascribed to torsion about the C−C axle. This behaviour is contrasted with second generation photomolecular motors; the principal differences are explained by the existence of a barrier on the excited state surface in the case of the first‐generation motors which is absent in the second generation. These results will help to provide a basis for designing more efficient molecular motors in the future.

中文翻译:

第一代光分子电动机中的超快激发态动力学。

高效的光分子电动机将是分子机器设计和开发中的关键要素。光异构化的量子产率的优化要求对激发电子态的分子动力学有详细的了解。在这里,我们用低于50 fs的时间分辨荧光光谱仪研究了原型第一代光分子马达中的主要光物理过程。在Franck-Condon状态以100 fs的弛豫观察到双峰弛豫,以减少的跃迁矩填充红移状态,然后在皮秒的时间尺度上经历了多指数衰减。由于S 1中振动相干的激发而产生的振荡状态可以在超快结构松弛中幸存。皮秒的松弛显示出很强的溶剂摩擦作用,因此归因于C-C轴的扭转。这种行为与第二代光分子电动机形成对比。第一代电动机在励磁态表面上存在障碍,而第二代电动机则没有这种障碍。这些结果将为将来设计更高效的分子电动机提供基础。
更新日期:2020-02-03
down
wechat
bug