当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Joint Waveform and Receiver Design for Co-Channel Hybrid Active-Passive Sensing with Timing Uncertainty
IEEE Transactions on Signal Processing ( IF 4.6 ) Pub Date : 2020-01-01 , DOI: 10.1109/tsp.2020.2964194
Fangzhou Wang , Hongbin Li

We consider a hybrid active-passive radar system that employs a wireless source as a passive illuminator of opportunity (IO) and a co-channel active radar transmitter operating in the same frequency band to seek spectral efficiency. The hybrid system can take advantage of the strengths of passive radar (e.g., energy efficiency, bi-/multi-static configuration, and spatial diversity) as well as those of active radar (dedicated transmitter, flexible transmit beam steering, waveform optimized for sensing, etc.). To mitigate the mutual interference and location-induced timing uncertainty between the radar and communication signals, we propose two designs for the joint optimization of the radar waveform and receive filters. The first is a max-min (MM) criterion that optimizes a worst-case performance metric over a timing uncertainty interval, and the other a weighted-sum (WS) criterion that forms a weighted sum of the performance metric at each delay within the delay uncertainty interval. Both design criteria result in nonconvex constrained optimization problems that are solved by sequential convex programming methods. When timing uncertainty vanishes, the two designs become identical and admit a simpler solution. Numerical results are presented to demonstrate the performance of the proposed hybrid schemes in comparison with conventional active-only and passive-only radar systems.

中文翻译:

具有时序不确定性的同信道混合主动-被动传感的联合波形和接收器设计

我们考虑一种混合有源-无源雷达系统,该系统采用无线源作为无源机会照明器 (IO) 和在相同频段工作的同信道有源雷达发射机以寻求频谱效率。混合系统可以利用无源雷达的优势(例如,能源效率、双/多静态配置和空间分集)以及有源雷达(专用发射机、灵活的发射波束控制、针对传感进行优化的波形) , 等等。)。为了减轻雷达和通信信号之间的相互干扰和位置引起的定时不确定性,我们提出了两种联合优化雷达波形和接收滤波器的设计。第一个是最大-最小 (MM) 标准,它在时间不确定性间隔内优化最坏情况的性能指标,另一个是加权和 (WS) 标准,该标准形成延迟不确定性间隔内每个延迟处的性能度量的加权和。这两种设计标准都会导致非凸约束优化问题,这些问题可以通过顺序凸规划方法解决。当时序不确定性消失时,两种设计变得相同并采用更简单的解决方案。数值结果展示了所提出的混合方案与传统的仅主动和被动雷达系统相比的性能。这两种设计变得相同,并采用更简单的解决方案。数值结果展示了所提出的混合方案与传统的仅主动和被动雷达系统相比的性能。这两种设计变得相同,并采用更简单的解决方案。数值结果展示了所提出的混合方案与传统的仅主动和被动雷达系统相比的性能。
更新日期:2020-01-01
down
wechat
bug