当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlled synthesis of Fe3O4@C@manganese oxides (MnO2, Mn3O4 and MnO) hierarchical hollow nanospheres and their superior lithium storage properties
Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-01-23 , DOI: 10.1016/j.electacta.2020.135739
Yong Wang , Shun Rao , Peiyuan Mao , Fanchao Zhang , Pandeng Xiao , Lian Peng , Qingshan Zhu

We develop a facile approach to controlled-synthesize Fe3O4@[email protected]X (MnO2, Mn3O4 and MnO) hierarchical hollow nanospheres by using Fe3O4@C hollow nanospheres as the template. By simply adjusting the calcination temperature and time, three kinds of Fe3O4@[email protected]X (MnO2, Mn3O4 and MnO) hierarchical hollow nanospheres with different phase states of manganese oxides external layer are tailored. In virtue of the synergistic effect of Fe3O4 hollow nanostructures as supporters, the conductive carbon layer and MnOX external layer, the three hollow nanocomposites exhibit excellent lithium storage properties. At 0.1Ag-1, Fe3O4@[email protected]2, Fe3O4@[email protected]3O4 and Fe3O4@[email protected] hierarchical hollow nanospheres still have specific capacities of 708, 833 and 670mAhg−1 after 150 cycles, respectively. Even at 0.5Ag-1, the reversible capacity of the three hollow nanocomposites remains 609, 780 and 523mAhg−1 after 500 cycles, respectively. Interestingly, Fe3O4@[email protected]3O4 hierarchical hollow nanospheres possess more outstanding Li storage properties than Fe3O4@[email protected]2 and Fe3O4@[email protected] hierarchical hollow nanospheres because the former have more stable Mn3O4 external layer during intensive cycles. The rational design of the phase state for Fe3O4@[email protected]X (MnO2, Mn3O4 and MnO) hierarchical hollow nanospheres can provide a novel synthetic strategy for energy storage nanomaterials with optimized performances.



中文翻译:

Fe3O4 @ C @锰氧化物(MnO2,Mn3O4和MnO)分层空心纳米球的可控合成及其优异的锂存储性能

我们以Fe 3 O 4 @C空心纳米球为模板,开发了一种简便的方法来控制合成Fe 3 O 4 @ [受电子邮件保护] X(MnO 2,Mn 3 O 4和MnO)分层空心球。通过简单地调节煅烧温度和时间,就可以制备出具有不同相态的锰氧化物外层的三种Fe 3 O 4 @(电子邮件保护的)X(MnO 2,Mn 3 O 4和MnO)分层中空纳米球。由于Fe 3的协同作用作为载体的O 4空心纳米结构,导电碳层和MnO X外层,这三种空心纳米复合材料均具有优异的锂储存性能。在0.1Ag -1时,Fe 3 O 4 @ [受电子邮件保护] 2,Fe 3 O 4 @ [受电子邮件保护] 3 O 4和Fe 3 O 4 @ [受电子邮件保护]分层中空纳米球的比容量仍为708、833 150次循环后分别为670mAhg -1和670mAhg -1。即使在0.5Ag -1三种中空纳米复合材料的可逆容量在500次循环后分别保持609、780和523mAhg -1。有趣的是,Fe 3 O 4 @ [受电子邮件保护的] 3 O 4分层中空纳米球比Fe 3 O 4 @ [受电子邮件保护的] 2和Fe 3 O 4 @ [受电子邮件保护]分层中空纳米球具有更出色的锂存储性能。在密集循环中具有更稳定的Mn 3 O 4外层。Fe 3 O 4 @ [受电子邮件保护]的相态的合理设计X(MnO 2,Mn 3 O 4和MnO)分层空心纳米球可以为具有优化性能的储能纳米材料提供一种新颖的合成策略。

更新日期:2020-01-23
down
wechat
bug