当前位置: X-MOL 学术J. Exp. Bot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish.
Journal of Experimental Botany ( IF 6.9 ) Pub Date : 2020-05-09 , DOI: 10.1093/jxb/eraa010
Qingbiao Wang 1, 2, 3 , Yanping Wang 1, 2, 3 , Honghe Sun 1, 2, 3 , Liang Sun 4 , Li Zhang 1, 2, 3
Affiliation  

Red-fleshed radish (Raphanus sativus L.) is a unique cultivar whose taproot is rich in anthocyanins beneficial to human health. However, the frequent occurrence of white-fleshed mutants affects the purity of commercially produced radish and the underlying mechanism has puzzled breeders for many years. In this study, we combined quantitative trait location by genome resequencing and transcriptome analyses to identify a candidate gene (RsMYB1) responsible for anthocyanin accumulation in red-fleshed radish. However, no sequence variation was found in the coding and regulatory regions of the RsMYB1 genes of red-fleshed (MTH01) and white-fleshed (JC01) lines, and a 7372 bp CACTA transposon in the RsMYB1 promoter region occurred in both lines. A subsequent analysis suggested that the white-fleshed mutant was the result of altered DNA methylation in the RsMYB1 promoter. This heritable epigenetic change was due to the hypermethylated CACTA transposon, which induced the spreading of DNA methylation to the promoter region of RsMYB1. Thus, RsMYB1 expression was considerably down-regulated, which inhibited anthocyanin biosynthesis in the white-fleshed mutant. An examination of transgenic radish calli and the results of a virus-induced gene silencing experiment confirmed that RsMYB1 is responsible for anthocyanin accumulation. Moreover, the mutant phenotype was partially eliminated by treatment with a demethylating agent. This study explains the molecular mechanism regulating the appearance of white-fleshed mutants of red-fleshed radish.

中文翻译:

转座子诱导的RsMYB1启动子甲基化干扰了红肉萝卜中的花色苷积累。

红肉萝卜(Raphanus sativus L.)是一种独特的品种,其主根富含有益于人类健康的花青素。然而,白肉突变体的频繁发生影响了商业生产的萝卜的纯度,其潜在的机理困扰了很多年的育种者。在这项研究中,我们结合了基因组重测序和转录组分析的定量性状定位,以鉴定负责红肉萝卜中花色苷积累的候选基因(RsMYB1)。然而,在红肉(MTH01)和白肉(JC01)系的RsMYB1基因的编码和调控区中未发现序列变异,并且在RsMYB1启动子区域中均发生了7372 bp的CACTA转座子。随后的分析表明,白肉突变体是RsMYB1启动子中DNA甲基化改变的结果。这种可遗传的表观遗传变化是由于高甲基化的CACTA转座子引起的,后者引起DNA甲基化扩散到RsMYB1的启动子区域。因此,RsMYB1表达明显下调,从而抑制了白肉突变体中花色苷的生物合成。对转基因萝卜愈伤组织的检查和病毒诱导的基因沉默实验的结果证实,RsMYB1负责花青素的积累。此外,通过用去甲基化剂处理,突变表型被部分消除。这项研究解释了调控红肉萝卜白肉突变体外观的分子机制。这种可遗传的表观遗传变化是由于高甲基化的CACTA转座子引起的,后者引起DNA甲基化扩散到RsMYB1的启动子区域。因此,RsMYB1表达明显下调,从而抑制了白肉突变体中花色苷的生物合成。对转基因萝卜愈伤组织的检查和病毒诱导的基因沉默实验的结果证实,RsMYB1负责花色苷的积累。此外,通过用去甲基化剂处理,突变表型被部分消除。这项研究解释了调控红肉萝卜白肉突变体外观的分子机制。这种可遗传的表观遗传变化是由于高甲基化的CACTA转座子引起的,后者引起DNA甲基化扩散到RsMYB1的启动子区域。因此,RsMYB1表达明显下调,从而抑制了白肉突变体中花色苷的生物合成。对转基因萝卜愈伤组织的检查和病毒诱导的基因沉默实验的结果证实,RsMYB1负责花青素的积累。此外,通过用去甲基化剂处理,突变表型被部分消除。这项研究解释了调控红肉萝卜白肉突变体外观的分子机制。抑制了白肉突变体中的花色苷生物合成。对转基因萝卜愈伤组织的检查和病毒诱导的基因沉默实验的结果证实,RsMYB1负责花青素的积累。此外,通过用去甲基化剂处理,突变表型被部分消除。这项研究解释了调控红肉萝卜白肉突变体外观的分子机制。抑制了白肉突变体中的花色苷生物合成。对转基因萝卜愈伤组织的检查和病毒诱导的基因沉默实验的结果证实,RsMYB1负责花青素的积累。此外,通过用去甲基化剂处理,突变表型被部分消除。这项研究解释了调控红肉萝卜白肉突变体外观的分子机制。
更新日期:2020-01-21
down
wechat
bug