当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Waste biomass-derived oxygen and nitrogen co-doped porous carbon/MgO composites as superior acetone adsorbent: Experimental and DFT study on the adsorption behavior
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-01-21 , DOI: 10.1016/j.cej.2020.124173
Ke Zhou , Weiwu Ma , Zheng Zeng , Ruofei chen , Xiang Xu , Baogen Liu , Hailong Li , Haoyang Li , Liqing Li

The amount of anthropogenic volatile organic compounds (VOCs) emission keeps increasing worldwide, and it urges the development of VOC emission reduction technology. Efficient and environmentally friendly adsorption technology is receiving more interest, and carbon-based materials have attracted enormous attention for VOC capture. However, the poor adsorption capacity and cycling stability still hinder their application. Moreover, the mechanism of adsorption behavior between functionalized carbon surfaces and VOCs has not been investigated in detail. Herein, we report a sustainable and cost-effective method for the anchoring of the MgO nanoparticle onto O/N co-doped porous carbon derived from waste biomass (denoted as [email protected]). The optimized 7%[email protected] composite exhibited an exceedingly high acetone adsorption capacity (859 mg g–1 at 25 °C, 18kPa) and excellent cycling stability (95.2% capacity retention over 10 cycles). Acetone dynamic breakthrough tests showed that the adsorption capacity of 7%[email protected] composite at 10% breakthrough level (10% BT) and 100% BT was 384 and 508 mg g–1, respectively (in terms of PC: 3.9 × 10−3 and 5.2 × 10−2 mol kg−1 Pa−1, respectively). Isotherm model fitting and quantum chemistry calculation studies indicated O/N functional groups and MgO nanoparticles can significantly improve the acetone monolayer adsorption at low relative pressures due to hydrogen bonds and electrostatic interaction. Highly active MgO nanoparticles and pore structure characteristics are found to be determinative factors for acetone adsorption at high relative pressure.



中文翻译:

废生物质衍生的氧氮共掺杂多孔碳/ MgO复合材料作为优良的丙酮吸附剂:吸附行为的实验和DFT研究

人为挥发性有机化合物(VOC)的排放量在世界范围内一直在增加,这推动了VOC减排技术的发展。高效,环保的吸附技术正受到越来越多的关注,而碳基材料已受到VOC捕集的极大关注。但是,较差的吸附能力和循环稳定性仍然阻碍了它们的应用。此外,尚未详细研究功能化碳表面与VOC之间的吸附行为机理。在这里,我们报告了一种可持续的,具有成本效益的方法,用于将MgO纳米颗粒锚固到源自废物生物质的O / N共掺杂多孔碳上(表示为[电子邮件保护])。经过优化的7%(受电子邮件保护)复合材料具有极高的丙酮吸附能力(859 mg g在25°C,18kPa时为–1,并具有出色的循环稳定性(在10个循环中保持95.2%的容量)。丙酮动态突破试验表明,在10%突破水平(10%BT)和100%BT下,7%[受电子邮件保护]复合材料的吸附容量分别为384和508 mg g –1(以PC计:3.9×10 -3和5.2×10 -2 mol kg -1 Pa -1, 分别)。等温模型拟合和量子化学计算研究表明,由于氢键和静电相互作用,O / N官能团和MgO纳米颗粒可在低相对压力下显着改善丙酮单层吸附。发现高活性的MgO纳米颗粒和孔结构特征是高相对压力下丙酮吸附的决定性因素。

更新日期:2020-01-22
down
wechat
bug