当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimizing Landsat time series length for regional mapping of lidar-derived forest structure
Remote Sensing of Environment ( IF 13.5 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.rse.2020.111645
Douglas K. Bolton , Piotr Tompalski , Nicholas C. Coops , Joanne C. White , Michael A. Wulder , Txomin Hermosilla , Martin Queinnec , Joan E. Luther , Olivier R. van Lier , Richard A. Fournier , Murray Woods , Paul M. Treitz , Karin Y. van Ewijk , George Graham , Lauren Quist

Abstract The value of combining Landsat time series and airborne laser scanning (ALS) data to produce regional maps of forest structure has been well documented. However, studies are often performed over single study areas or forest types, preventing a robust assessment of the approaches that produce the most accurate estimates. Here, we use Landsat time series data to estimate forest attributes across six Canadian study sites, which vary by forest type, productivity, management regime, and disturbance history, with the goal of investigating which spectral indices and time series lengths yield the most accurate estimates of forest attributes across a range of conditions. We use estimates of stand height, basal area, and stem volume derived from ALS data as calibration and validation data, and develop random forest models to estimate forest structure with Landsat time series data and topographic variables at each site. Landsat time series predictors, which were derived from annual gap-free image composites, included the median, interquartile range, and Theil Sen slope of vegetation indices through time. To investigate the optimal time series length for predictor variables, time series length was varied from 1 to 33 years. Across all six sites, increasing the time series length led to improved estimation accuracy, however the optimal time series length was not consistent across sites. Specifically, model accuracies plateaued at a time series length of ~15 years for two sites (R2 = 0.67–0.74), while the accuracies continued to increase until the maximum time series length was reached (24–29 years) for the remaining four sites (R2 = 0.45–0.70). Spectral indices that relied on shortwave infrared bands (Tasseled Cap Wetness and Normalized Burn Ratio) were frequently the most important spectral indices. Adding Landsat-derived disturbance variables (time since last disturbance, type of disturbance) did not meaningfully improve model results; however, this finding was largely due to the fact that most recently disturbed stands did not have predictions of forest attributes from ALS, so disturbed sites were poorly represented in the models. As model accuracies varied regionally and no optimal time series length was found, we provide an approach that can be utilized to determine the optimal time series length on a case by case basis, allowing users to extrapolate estimates of forest attributes both spatially and temporally using multispectral time series data.

中文翻译:

为激光雷达衍生的森林结构区域制图优化 Landsat 时间序列长度

摘要 结合 Landsat 时间序列和机载激光扫描 (ALS) 数据来制作区域森林结构地图的价值已得到充分证明。然而,研究通常是在单个研究区域或森林类型上进行的,这阻碍了对产生最准确估计的方法的稳健评估。在这里,我们使用 Landsat 时间序列数据来估计加拿大六个研究地点的森林属性,这些地点因森林类型、生产力、管理制度和干扰历史而异,目的是调查哪些光谱指数和时间序列长度产生最准确的估计一系列条件下的森林属性。我们使用从 ALS 数据中得出的立柱高度、基面积和茎体积的估计值作为校准和验证数据,并开发随机森林模型,以利用每个站点的 Landsat 时间序列数据和地形变量来估计森林结构。Landsat 时间序列预测因子源自年度无间隙图像合成,包括植被指数随时间变化的中值、四分位距和 Theil Sen 斜率。为了研究预测变量的最佳时间序列长度,时间序列长度从 1 年到 33 年不等。在所有六个站点中,增加时间序列长度可以提高估计精度,但是各个站点的最佳时间序列长度不一致。具体而言,两个站点的模型精度在约 15 年的时间序列长度上趋于稳定(R2 = 0.67-0.74),而其余四个站点的精度继续增加,直到达到最大时间序列长度(24-29 年) (R2 = 0。45–0.70)。依赖于短波红外波段的光谱指数(缨帽湿润度和归一化燃烧比)通常是最重要的光谱指数。添加 Landsat 衍生的干扰变量(自上次干扰以来的时间、干扰类型)并没有显着改善模型结果;然而,这一发现主要是由于最近受到干扰的林分没有来自 ALS 的森林属性预测,因此模型中的受干扰地点的代表性较差。由于模型精度因地区而异,并且没有找到最佳时间序列长度,我们提供了一种方法,可用于根据具体情况确定最佳时间序列长度,允许用户使用多光谱在空间和时间上推断森林属性的估计值时间序列数据。依赖于短波红外波段的光谱指数(缨帽湿润度和归一化燃烧比)通常是最重要的光谱指数。添加 Landsat 衍生的干扰变量(自上次干扰以来的时间、干扰类型)并没有显着改善模型结果;然而,这一发现主要是由于最近受到干扰的林分没有来自 ALS 的森林属性预测,因此模型中的受干扰地点的代表性较差。由于模型精度因地区而异,并且没有找到最佳时间序列长度,我们提供了一种方法,可用于根据具体情况确定最佳时间序列长度,允许用户使用多光谱在空间和时间上推断森林属性的估计值时间序列数据。依赖于短波红外波段的光谱指数(缨帽湿润度和归一化燃烧比)通常是最重要的光谱指数。添加 Landsat 衍生的干扰变量(自上次干扰以来的时间、干扰类型)并没有显着改善模型结果;然而,这一发现主要是由于最近受到干扰的林分没有来自 ALS 的森林属性预测,因此模型中的受干扰地点的代表性较差。由于模型精度因地区而异,并且没有找到最佳时间序列长度,我们提供了一种方法,可用于根据具体情况确定最佳时间序列长度,允许用户使用多光谱在空间和时间上推断森林属性的估计值时间序列数据。
更新日期:2020-03-01
down
wechat
bug