当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.
Biotechnology for Biofuels ( IF 6.1 ) Pub Date : 2020-01-22 , DOI: 10.1186/s13068-019-1641-2
Phuong Hoang Nguyen Tran 1, 2 , Ja Kyong Ko 1, 2 , Gyeongtaek Gong 1 , Youngsoon Um 1, 2, 3 , Sun-Mi Lee 1, 2, 3
Affiliation  

Background Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. Results In this study, we developed a powerful mixed-sugar co-fermenting strain of S. cerevisiae, XUSEA, with improved xylose conversion capacity during simultaneous glucose/xylose co-fermentation. To reinforce xylose catabolism, the overexpression target in the pentose phosphate pathway was selected using a DNA assembler method and overexpressed increasing xylose consumption and ethanol production by twofold. The performance of the newly engineered strain with improved xylose catabolism was further boosted by elevating fermentation temperature and thus significantly reduced the co-fermentation time by half. Through combined efforts of reinforcing the pathway of xylose catabolism and elevating the fermentation temperature, XUSEA achieved simultaneous co-fermentation of lignocellulosic hydrolysates, composed of 39.6 g L-1 glucose and 23.1 g L-1 xylose, within 24 h producing 30.1 g L-1 ethanol with a yield of 0.48 g g-1. Conclusions Owing to its superior co-fermentation performance and ability for further engineering, XUSEA has potential as a platform in a lignocellulosic biorefinery toward realizing a more economical and sustainable process for large-scale bioethanol production.

中文翻译:

改进了酿酒酵母对葡萄糖和木糖的同时共发酵,以实现高效的木质纤维素生物精炼。

背景木质纤维素生物精炼厂提供经济和可持续的燃料和化学品生产。酿酒酵母是一种很有前途的生物精炼工业宿主,它已被集中开发以扩大其产品范围。然而,木糖向目标产物的连续和缓慢转化仍然是实现高效工业木质纤维素生物精炼的主要挑战之一。结果 在这项研究中,我们开发了一种强大的酿酒酵母混合糖共发酵菌株 XUSEA,在同时进行葡萄糖/木糖共发酵期间具有提高的木糖转化能力。为了加强木糖分解代谢,使用 DNA 组装方法选择磷酸戊糖途径中的过表达目标,并过表达增加木糖消耗和乙醇产量两倍。通过提高发酵温度,进一步提高了木糖分解代谢得到改善的新工程菌株的性能,从而显着减少了一半的共发酵时间。通过加强木糖分解代谢途径和提高发酵温度的共同努力,XUSEA在24小时内实现了由39.6 g L-1葡萄糖和23.1 g L-1木糖组成的木质纤维素水解物的同时共发酵,产生30.1 g L- 1 乙醇,产量为 0.48 g g-1。结论由于其卓越的共发酵性能和进一步工程化的能力,XUSEA 具有作为木质纤维素生物精炼平台的潜力,可实现更经济和可持续的大规模生物乙醇生产工艺。
更新日期:2020-01-22
down
wechat
bug