当前位置: X-MOL 学术npj Clean Water › 论文详情
Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-Δ 9 -tetrahydrocannabinol in water
npj Clean Water Pub Date : 2020-01-21 , DOI: 10.1038/s41545-019-0049-7
Arsalan Khalid; Lewis S. Rowles; Mohamed Ateia; Minhao Xiao; Irwing Ramirez-Sanchez; Dhimiter Bello; Tanju Karanfil; Navid B. Saleh; Onur G. Apul

Increasing cannabinoid use with the incipient favorable public discourse raises concerns about their environmental release and potential impacts. Concentration of common cannabinoids and their metabolites (e.g., THC and THC-COOH) are already detected in source waters and engineered water systems across the globe with a rising trajectory. This study examines the adsorption of THC and THC-COOH onto activated carbons in surface water-relevant concentrations and investigates the effect of carbon’s physicochemical properties. At higher equilibrium concentration (i.e., Ce > 300 µg/L), adsorption of cannabinoids correlates with the sorbent-specific surface area. On the contrary, at lower concentrations (i.e., Ce = 0.1–100 µg/L), cannabinoid adsorption was predominantly controlled by pore size of the carbon. More specifically, when the surface area was not limited (i.e., dilution conditions), cannabinoid molecules appeared to have preferably attached within the mesopores. The adsorption mechanism deciphered in the study will facilitate in selection of commercial activated carbon to remove cannabinoids in drinking water treatment systems. This work will also provide a baseline for further research on removal of other cannabinoids (e.g., CBD), other structurally relevant drugs, their metabolites, and reaction byproduct from engineered treatment systems.
更新日期:2020-01-22

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug