当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-resolved temperature-jump measurements and steady-state thermal imaging of nanoscale heat transfer of gold nanostructures on AlGaN:Er3+ thin films.
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2020-01-21 , DOI: 10.1063/1.5133844
Kristina Shrestha 1 , Juvinch R Vicente 1 , Ali Rafiei Miandashti 1 , Jixin Chen 1 , Hugh H Richardson 1
Affiliation  

For a nanostructure sitting on top of an AlGaN:Er3+ thin film, a new thermal imaging technique is presented where dual cameras collect bandpass filtered videos from the H and S bands of Er3+ emission. We combine this thermal imaging technique with our newly developed time-resolved temperature measurement technique which relies on luminescence thermometry using Er3+ emission. This technique collects time-resolved traces from the H and S bands of Er3+ emission. The H and S signal traces are then used to reconstruct the time-resolved temperature transient when a nanostructure is illuminated with a pulsed 532 nm light. Two different types of samples are interrogated with these techniques (drop-casted gold nanosphere cluster and lithographically prepared gold nanodot) on the AlGaN:Er3+ film. Steady-state and time-resolved temperature data are collected when the samples are immersed in air and water. The results of time-resolved temperature-jump measurements from a cluster of gold nanospheres show extremely slow heat transfer when the cluster is immersed in water and nearly 200-fold increase when immersed in air. The low thermal diffusivity for the cluster in water suggests poor thermal contact between the cluster and the thermal bath. The lithographically prepared nanodot has much better adhesion to the AlGaN film, resulting in much higher thermal diffusivity in both air and water. This proof-of-concept demonstration opens a new way to measure the dynamics of the local heat generation and dissipation at the nanoparticle-media interface.

中文翻译:

在AlGaN:Er3 +薄膜上金纳米结构的纳米级传热的时间分辨温度跳跃测量和稳态热成像。

对于位于AlGaN:Er3 +薄膜顶部的纳米结构,提出了一种新的热成像技术,其中双摄像头从Er3 +发射的H和S波段收集带通滤波后的视频。我们将这种热成像技术与我们新开发的时间分辨温度测量技术相结合,该技术依赖于使用Er3 +发射的发光测温法。该技术从Er3 +发射的H和S波段收集时间分辨的迹线。然后,当用脉冲532 nm的光照射纳米结构时,H和S信号迹线用于重建时间分辨的温度瞬变。使用这些技术在AlGaN:Er3 +膜上询问了两种不同类型的样品(滴铸金纳米球簇和光刻制备的金纳米点)。当样品浸入空气和水中时,将收集稳态和时间分辨温度数据。一簇金纳米球的时间分辨温度跳跃测量结果显示,当该簇浸入水中时,传热非常慢,而浸入空气中时,传热增加近200倍。团簇在水中的低热扩散率表明团簇与热浴之间不良的热接触。光刻制备的纳米点对AlGaN膜具有更好的附着力,从而在空气和水中均具有更高的热扩散率。这一概念验证演示为测量纳米粒子-介质界面处局部热量的产生和散发的动力学提供了新的方法。一簇金纳米球的时间分辨温度跳跃测量结果显示,当该簇浸入水中时,传热非常慢,而浸入空气中时,传热增加近200倍。团簇在水中的低热扩散率表明团簇与热浴之间不良的热接触。光刻制备的纳米点对AlGaN膜具有更好的附着力,从而在空气和水中均具有更高的热扩散率。这一概念验证演示为测量纳米粒子-介质界面处局部热量的产生和散发的动力学特性开辟了一条新途径。一簇金纳米球的时间分辨温度跳跃测量结果显示,当该簇浸入水中时,传热非常慢,而浸入空气中时,传热增加近200倍。团簇在水中的低热扩散率表明团簇与热浴之间不良的热接触。光刻制备的纳米点对AlGaN膜具有更好的附着力,从而在空气和水中均具有更高的热扩散率。这一概念验证演示为测量纳米粒子-介质界面处局部热量的产生和散发的动力学特性开辟了一条新途径。团簇在水中的低热扩散率表明团簇与热浴之间不良的热接触。光刻制备的纳米点对AlGaN膜具有更好的附着力,从而在空气和水中均具有更高的热扩散率。这一概念验证演示为测量纳米粒子-介质界面处局部热量的产生和散发的动力学特性开辟了一条新途径。团簇在水中的低热扩散率表明团簇与热浴之间不良的热接触。光刻制备的纳米点对AlGaN膜具有更好的附着力,从而在空气和水中均具有更高的热扩散率。这一概念验证演示为测量纳米粒子-介质界面处局部热量的产生和散发的动力学特性开辟了一条新途径。
更新日期:2020-01-22
down
wechat
bug