当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer improvement in simulated small battery compartment using metal oxide (CuO)/deionized water nanofluid
Heat and Mass Transfer ( IF 1.7 ) Pub Date : 2019-08-02 , DOI: 10.1007/s00231-019-02719-6
N. Ahmed Bin-Abdun , Z. M. Razlan , S. A. Bakar , C. H. Voon , Z. Ibrahim , W. K. Wan , M. J. M. Ridzuan

Abstract

Improving the heat transfer coefficient of working fluids is essential for achieving the best performance of manufacturing systems. As a replacement of conventional working fluids, nanofluids have a high potential for improving this heat transfer coefficient. However, nanofluids are seldom implemented in actual systems, and several factors should be considered before actual application. Accordingly, this study investigated the thermophysical properties and heat transfer rate of CuO/deionized water nanofluid with and without sodium dodecyl sulfate (SDS) surfactants. Three different volumetric concentrations of the nanofluid were prepared using a two-step preparation method. The experimental steps were divided into two phases: static and dynamic. In these experiments, the thermophysical properties of the prepared nanofluids and the heat transfer coefficient were measured using an apparatus designed based on an actual heat exchanger for a lithium ion polymer battery compartment. The effects of flow rate and surfactants on the heat transfer rate of the nanofluids with varying volumetric concentrations of 0.08%, 0.16%, and 0.40% were analyzed. The results indicate that the heat transfer rate increases considerably as the flow rate increases from 0.5 L/min to 1.2 L/min and with the presence of surfactants. The highest heat transfer rate was obtained at a 0.40% volumetric concentration of CuO/deionized water nanofluid with SDS surfactant.



中文翻译:

使用金属氧化物(CuO)/去离子水纳米流体改善模拟小型电池仓的传热

摘要

改善工作流体的传热系数对于实现制造系统的最佳性能至关重要。作为常规工作流体的替代品,纳米流体具有改善这种传热系数的高潜力。但是,纳米流体很少在实际系统中实现,在实际应用之前应考虑几个因素。因此,本研究研究了有和没有十二烷基硫酸钠(SDS)表面​​活性剂的CuO /去离子水纳米流体的热物理性质和传热速率。使用两步制备方法制备了三种不同体积浓度的纳米流体。实验步骤分为两个阶段:静态和动态。在这些实验中 使用基于用于锂离子聚合物电池室的实际热交换器设计的设备,测量所制备的纳米流体的热物理性质和热传递系数。分析了流速和表面活性剂对体积分数为0.08%,0.16%和0.40%的纳米流体传热速率的影响。结果表明,在存在表面活性剂的情况下,当流量从0.5 L / min增加到1.2 L / min时,传热速率会显着增加。含SDS表面活性剂的CuO /去离子水纳米流体的体积浓度为0.40%时,传热率最高。分析了流速和表面活性剂对体积分数为0.08%,0.16%和0.40%的纳米流体传热速率的影响。结果表明,在存在表面活性剂的情况下,当流量从0.5 L / min增加到1.2 L / min时,传热速率会显着增加。含SDS表面活性剂的CuO /去离子水纳米流体的体积浓度为0.40%时,传热率最高。分析了流速和表面活性剂对体积分数为0.08%,0.16%和0.40%的纳米流体传热速率的影响。结果表明,在存在表面活性剂的情况下,当流量从0.5 L / min增加到1.2 L / min时,传热速率会显着增加。含SDS表面活性剂的CuO /去离子水纳米流体的体积浓度为0.40%时,传热率最高。

更新日期:2020-01-22
down
wechat
bug