当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Leaf-Vein-like MnO2@PVDF Nanofiber Gel polymer Electrolyte matrix for Li-ion Capacitor with Excellent Thermal Stability and Improved Cyclability
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-01-20 , DOI: 10.1016/j.cej.2020.124058
Xian-lei Shen , Zong-jie Li , Nan-ping Deng , Jie Fan , Liang Wang , Zhao-peng Xia , Wei-min Kang , Yong Liu

Many anode materials are fabricated and their behaviors in Li-ion capacitors (LIC) are investigated to reduce the imbalance of the power capability between the electrodes, which greatly affects the cycle performance of LIC. Yet, the separator of LIC was left out of this contribution. In this work, the in-situ growth of manganese [email protected] fluoride/ tetrabutylammonium chloride (MnO2@PVDF/TBAC) leaf-vein-like nanofiber membrane (LVNM) with enhanced mechanical properties and excellent porosity was developed to effectively improve the ionic conductivity of the matrix and to improve the cycle performance of the LIC. Multi-walled carbon nanotubes (MWCNTs) was employed as reducing agent to produce in-situ growth of MnO2 nanosheets as the shell of the nanofibers, which not only further enhanced the LIC cyclability by providing additional capacity for LIC, but also avoided short circuit problem. The leaf-vein-like structure could greatly enhance the porosity and electrolyte retention of the matrix to accelerate ion transport between the two electrodes. Meanwhile, the in-situ growth of MnO2 nanosheets could promote the thermal stability of the gel polymer electrolyte (GPE) matrix and improve the LIC cycle stability. The MnO2@PVDF/TBAC matrix possessed excellent thermal stability (rose to 170°C), high porosity (73%) and good ionic conductivity (2.95 * 10−3 S/cm). The LIC assembled with MnO2@PVDF/TBAC LVNM showed enhanced specific capacitance (19.5 F g-1), good rate capability, superior cycling stability (67.20% capacity retention after 10000 cycles at 0.5C), and high coulombic efficiency (∼100%). Thus, our work provides an effective strategy for enhancing the thermal stability and cyclability of LIC.



中文翻译:

锂离子电容器的叶脉状MnO 2 @PVDF纳米纤维凝胶聚合物电解质基质,具有出色的热稳定性和改善的循环性

制备了许多阳极材料,并研究了它们在锂离子电容器(LIC)中的行为,以减少电极之间的功率容量不平衡,这极大地影响了LIC的循环性能。但是,LIC的分隔符被排除在这一贡献之外。在这项工作中,开发了具有增强的机械性能和优异的孔隙率的锰(电子邮件保护)氟化物/四丁基氯化铵(MnO 2 @ PVDF / TBAC)叶脉状纳米纤维膜(LVNM)的原位生长,以有效改善基质的离子电导率并改善LIC的循环性能。使用多壁碳纳米管(MWCNT)作为还原剂,以原位生长MnO 2纳米片作为纳米纤维的壳,不仅通过提供额外的LIC容量进一步增强了LIC的可循环性,而且避免了短路问题。叶脉状结构可以大大提高基质的孔隙率和电解质保留能力,从而加速两个电极之间的离子传输。同时,MnO 2纳米片的原位生长可以促进凝胶聚合物电解质(GPE)基质的热稳定性,并提高LIC循环稳定性。MnO 2 @ PVDF / TBAC基体具有出色的热稳定性(上升至170°C),高孔隙率(73%)和良好的离子电导率(2.95 * 10 -3 S / cm)。与MnO 2 @ PVDF / TBAC LVNM组装的LIC显示出增强的比电容(19.5 F g-1),良好的倍率能力,优异的循环稳定性(在0.5C下10000次循环后,容量保持率为67.20%)和高库仑效率(〜100%)。因此,我们的工作为提高LIC的热稳定性和循环性提供了有效的策略。

更新日期:2020-01-21
down
wechat
bug