当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Evolution of tensile properties with transformation temperature in medium-carbon carbide-free bainitic steel
Materials Science and Engineering: A ( IF 4.081 ) Pub Date : 2020-01-17 , DOI: 10.1016/j.msea.2020.138964
Xiaoyan Long; Gengcen Zhao; Fucheng Zhang; Shan Xu; Zhinan Yang; Guojun Du; Ricardo Branco

Different morphologies of carbide-free bainite were obtained through a series of isothermal heat treatments of a new medium-carbon bainitic steel, and the evolution of microstructures during tensile deformation was then observed. The results showed that the strength-ductility balance could reach its highest value near 350 °C. The retained austenite sustaining martensitic transformation, long bainite ferrite sheaf, and phase transformation dynamics were the main factors that caused high plasticity of the steel at 350 °C isothermal transformation. It is noteworthy that 350 °C is also a phase change sensitive point for most bainitic steels. Maintaining high work hardening rate at high strain is beneficial to increase elongation, which is attributed to the continuous martensitic transformation of the retained austenite with high volume fraction. The (200) austenite peak was separated using the Gaussian multi-peaks fitting method. It was found that the (200) austenite peak moves to the left with the increase of strain. The proportion of low angle peaks also increased with strain. This indicates that the transformation of the retained austenite always occurs in the low carbon region.
更新日期:2020-01-21

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug