当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Magnetic Imaging of Iron Biomineralization in Teeth of the Chiton Acanthopleura hirtosa
Small Methods ( IF 10.7 ) Pub Date : 2020-01-19 , DOI: 10.1002/smtd.201900754
Julia M. McCoey 1 , Mirai Matsuoka 1 , Robert W. Gille 1 , Liam T. Hall 1 , Jeremy A. Shaw 2 , Jean‐Philippe Tetienne 1 , David Kisailus 3 , Lloyd C. L. Hollenberg 1 , David A. Simpson 1
Affiliation  

Iron is critical for life. Nature capitalizes on the physical attributes of iron biominerals for functional, structural, and sensory applications. Iron biomineralization is well exemplified by the magnetite‐bearing radula of chitons, the hardest known biomineral of any animal. Although magnetism is an integral property of iron biominerals, limited information exists on the magnetic state, structure, and orientation of these nanoscale materials during mineralization. The advent of quantum‐based magnetic microscopy provides a new avenue to probe these biological systems directly, providing detailed magnetic information of the iron oxide structures. Here two complementary quantum magnetic microscopy methods are applied, based on nitrogen‐vacancy centers in diamond, to spatially map the mineral phases ferrihydrite and magnetite in the developing teeth of the chiton Acanthopleura hirtosa. The images reveal previously undiscovered long‐range magnetic order, established at the onset of magnetite mineralization. This is in contrast to electron microscopy studies that show no strong common crystallographic orientation. The implications of these results are important, not just for the insights gained in biomineralization of the target organism, but also for the study of a broad range of iron minerals in the physical and biological sciences.

中文翻译:

Chiton Acanthopleura hirtosa牙齿中铁生物矿化的量子磁成像。

铁对生命至关重要。大自然充分利用了铁矿物质在功能,结构和感觉方面的物理特性。铁的生物矿化很好地体现了带磁铁的chi石的齿槽,这是任何动物中已知最难的生物矿物质。尽管磁性是铁生物矿物的固有属性,但是在矿化过程中有关这些纳米级材料的磁态,结构和取向的信息有限。基于量子的磁显微镜的出现为直接探测这些生物系统提供了一条新途径,提供了氧化铁结构的详细磁信息。基于钻石中的氮空位中心,这里应用了两种互补的量子磁显微镜方法,棘叶棘。这些图像揭示了以前未发现的,在磁铁矿成矿开始时建立的远距离磁阶。这与电子显微镜研究相反,后者没有显示出很强的共同晶体学取向。这些结果的意义很重要,不仅对于在目标生物的生物矿化中获得的见解,而且对于物理和生物科学中广泛的铁矿物质的研究也很重要。
更新日期:2020-01-21
down
wechat
bug