当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large Ocean Worlds with High-Pressure Ices
Space Science Reviews ( IF 9.1 ) Pub Date : 2020-01-20 , DOI: 10.1007/s11214-019-0633-7
Baptiste Journaux , Klára Kalousová , Christophe Sotin , Gabriel Tobie , Steve Vance , Joachim Saur , Olivier Bollengier , Lena Noack , Tina Rückriemen-Bez , Tim Van Hoolst , Krista M. Soderlund , J. Michael Brown

Pressures in the hydrospheres of large ocean worlds extend to ranges exceeding those in Earth deepest oceans. In this regime, dense water ices and other high-pressure phases become thermodynamically stable and can influence planetary processes at a global scale. The presence of high-pressure ices sets large icy worlds apart from other smaller water-rich worlds and complicates their study. Here we provide an overview of the unique physical states, thermodynamics, dynamic regimes, and evolution scenarios specific to large ocean worlds where high-pressure ice polymorphs form. We start by (i) describing the current state of knowledge for the interior states of large icy worlds in our solar system (i.e. Ganymede, Titan and Callisto). Then we (ii) discuss the thermodynamic and physical specifics of the relevant high–pressure materials, including ices, aqueous fluids and hydrates. While doing this we (iii) describe the current state of the art in modeling and understanding the dynamic regimes of high-pressure ice mantles. Based on these considerations we (iv) explore the different evolution scenarios for large icy worlds in our solar system. We (v) conclude by discussing the implications of what we know on chemical transport from the silicate core, extrapolation to exoplanetary candidate ocean worlds, limitations to habitability, differentiation diversity, and perspectives for future space exploration missions and experimental measurements.

中文翻译:

具有高压冰的大型海洋世界

大型海洋世界水圈中的压力延伸到超过地球最深海洋中的压力范围。在这种情况下,密集的水冰和其他高压相在热力学上变得稳定,可以在全球范围内影响行星过程。高压冰的存在使大型冰冷世界与其他较小的富含水的世界区分开来,并使他们的研究复杂化。在这里,我们概述了形成高压冰多形体的大型海洋世界特有的独特物理状态、热力学、动态机制和演化场景。我们首先 (i) 描述我们太阳系中大型冰冷世界(即木卫三、泰坦和卡利斯托)的内部状态的当前知识状态。然后我们 (ii) 讨论相关高压材料的热力学和物理特性,包括冰,水性流体和水合物。在这样做的同时,我们 (iii) 描述了建模和理解高压冰幔动态状态的当前技术水平。基于这些考虑,我们 (iv) 探索了太阳系中大型冰冷世界的不同演化场景。我们 (v) 最后讨论了我们所知道的对来自硅酸盐核心的化学传输、外推到系外行星候选海洋世界、可居住性的限制、分化多样性以及未来空间探索任务和实验测量的前景的影响。基于这些考虑,我们 (iv) 探索了太阳系中大型冰冷世界的不同演化场景。我们 (v) 最后讨论了我们所知道的对来自硅酸盐核心的化学传输、外推到系外行星候选海洋世界、可居住性的限制、分化多样性以及未来空间探索任务和实验测量的前景的影响。基于这些考虑,我们 (iv) 探索了太阳系中大型冰冷世界的不同演化场景。我们 (v) 最后讨论了我们所知道的对来自硅酸盐核心的化学传输、外推到系外行星候选海洋世界、可居住性的限制、分化多样性以及未来空间探索任务和实验测量的前景的影响。
更新日期:2020-01-20
down
wechat
bug