当前位置: X-MOL 学术Biotechnol. Biofuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
US biofuel production and policy: implications for land use changes in Malaysia and Indonesia.
Biotechnology for Biofuels ( IF 6.1 ) Pub Date : 2020-01-18 , DOI: 10.1186/s13068-020-1650-1
Farzad Taheripour 1 , Wallace E Tyner 1
Affiliation  

Background It has been argued that the US biofuel policy is responsible for the land use changes in Malaysia and Indonesia (M&I). In this paper, following a short literature review that highlights the relevant topics and issues, we develop analytical and numerical analyses to evaluate the extent to which production of biofuels in the US alters land use in M&I. The analytical analyses make it clear that market-mediated responses may generate some land use change in M&I due to biofuel production in the US. These analyses highlight the role of substitution among vegetable oils in linking these economies in markets for vegetable oils. To numerically quantify these effects, we modified and used a well-known Computable General Equilibrium model (CGE), GTAP-BIO. We conducted some sensitivity tests as well. Results According to the simulation results obtained from two base case scenarios for corn ethanol and soy biodiesel, we find that producing 15 BGs of corn ethanol and 2 BGs gallons of soy biodiesel together could potentially increase area of cropland in M&I by 59.6 thousand hectares. That is less than 0.5% of the cropland expansion in M&I for the time period of 2000-2016, when biofuel production increased in the US. The original GTAP-BIO model parameters including the regional substitution rates among vegetable oils were used for the base case scenarios. The estimated induced land use change (ILUC) emissions values for corn ethanol and soy biodiesel are about 12.3 g CO2e MJ-1, 17.5 g CO2e MJ-1 for the base case scenarios. The share of M&I in the estimated ILUC emissions value for corn ethanol is 10.9%. The corresponding figure for soy biodiesel is much higher, 78%. The estimated ILUC emissions value for soy biodiesel is sensitive with respect to the changes in the regional rates of substitution elasticity among vegetable oils. That is not the case for corn ethanol. When we replaced the original substitution elasticities of the base case, which are very large (i.e., 5 or 10) for many regions, with a small and uniform rate of substitution (i.e., 0.5) across the world, the ILUC emissions value for soy biodiesel drops from 17.5 g CO2e MJ-1 to 10.16 g CO2e MJ-1. When we applied larger substitution elasticities among vegetable oils, the estimated ILUC emissions value for soy biodiesel converged towards the base case results. This suggests that, other factors being equal, the base case substitution elasticities provide the largest possible ILUC emissions value for soy biodiesel. Finally, our analyses clearly indicate that those analyses that limit their modeling framework to only palm and soy oil and ignore other types of vegetable oils and fats provide misleading information and exaggerate about the land use implications of the US biofuels for M&I. Conclusion (1) Production of biofuels in the US generates some land use effects in M&I due to market-mediated responses, in particular through the links between markets for vegetable oils. These effects are minor compared to the magnitude of land use change in M&I. However, because of the high carbon intensity of the peatland the emissions fraction of M&I is larger, in particular for soy biodiesel. (2) The GTAP-BIO model implemented a set of regional substitution elasticities among vegetable oils that, other factors being equal, provides the largest possible ILUC emissions value for soy biodiesel. (3) With a larger substitution elasticity among all types of vegetable oils and animal fats in the US, less land use changes occur in M&I. That is due to the fact that a larger substitution elasticity among vegetable oils in the US, diverts a larger portion of the additional demand for soy oil to non-palm vegetable oils and animal fats that are produced either in the US or regions other than M&I. (4) Those analyses that limit their modeling framework to only palm and soy oils and ignore other types of vegetable oils and fats provide misleading information and exaggerate about the land use implications of the US biofuels for M&I.

中文翻译:

美国生物燃料生产和政策:对马来西亚和印度尼西亚土地利用变化的影响。

背景 有人认为,美国的生物燃料政策对马来西亚和印度尼西亚(M&I)的土地利用变化负有责任。在本文中,在对相关主题和问题进行简短的文献回顾之后,我们进行了分析和数值分析,以评估美国生物燃料生产在多大程度上改变了 M&I 中的土地利用。分析分析清楚地表明,由于美国的生物燃料生产,市场介导的反应可能会在 M&I 中产生一些土地利用变化。这些分析强调了植物油替代物在将这些经济体与植物油市场联系起来的作用。为了对这些影响进行数值量化,我们修改并使用了著名的可计算一般平衡模型 (CGE) GTAP-BIO。我们也进行了一些敏感性测试。结果 根据玉米乙醇和大豆生物柴油两个基本情景的模拟结果,我们发现,同时生产 15 BGs 的玉米乙醇和 2 BGs 加仑的大豆生物柴油可能会增加 M&I 的农田面积 5.96 万公顷。这还不到 2000 年至 2016 年期间 M&I 农田扩张的 0.5%,当时美国的生物燃料产量有所增加。原始 GTAP-BIO 模型参数(包括植物油的区域替代率)用于基本情景。对于基本情景情景,玉米乙醇和大豆生物柴油的估计诱发土地利用变化 (ILUC) 排放值约为 12.3 g CO2e MJ-1 和 17.5 g CO2e MJ-1。M&I 在估计的玉米乙醇 ILUC 排放值中的份额为 10.9%。大豆生物柴油的相应数字要高得多,为 78%。大豆生物柴油的估算 ILUC 排放值对植物油的区域替代弹性率的变化很敏感。玉米乙醇的情况并非如此。当我们用全球范围内的小而均匀的替代率(即 0.5)替换基准情景的原始替代弹性时,大豆的 ILUC 排放值对许多地区来说非常大(即 5 或 10)生物柴油从 17.5 g CO2e MJ-1 下降到 10.16 g CO2e MJ-1。当我们在植物油中应用更大的替代弹性时,大豆生物柴油的估计 ILUC 排放值趋向于基本情况结果。这表明,在其他因素相同的情况下,基本情况替代弹性为大豆生物柴油提供了最大可能的 ILUC 排放值。最后,我们的分析清楚地表明,那些将其建模框架仅限于棕榈油和豆油而忽略其他类型植物油和脂肪的分析提供了误导性信息,并夸大了美国生物燃料对 M&I 的土地利用影响。结论 (1) 由于市场调节反应,特别是通过植物油市场之间的联系,美国的生物燃料生产在 M&I 中产生了一些土地利用影响。与 M&I 中土地利用变化的幅度相比,这些影响很小。然而,由于泥炭地的高碳强度,M&I 的排放比例更大,尤其是大豆生物柴油。(2) GTAP-BIO 模型在植物油中实施了一组区域替代弹性,在其他因素相同的情况下,为大豆生物柴油提供最大可能的 ILUC 排放值。(3)美国各类植物油和动物脂肪的替代弹性较大,M&I中土地利用变化较小。这是因为美国植物油之间更大的替代弹性,将大部分豆油额外需求转移到美国或除 M&I 以外的地区生产的非棕榈植物油和动物脂肪。 . (4) 那些将其建模框架仅限于棕榈油和豆油而忽略其他类型的植物油和脂肪的分析提供了误导性信息,并夸大了美国生物燃料对 M&I 的土地利用影响。
更新日期:2020-01-21
down
wechat
bug