当前位置: X-MOL 学术J. Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the l.c.m. of random terms of binary recurrence sequences
Journal of Number Theory ( IF 0.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jnt.2019.12.004
Carlo Sanna

For every positive integer $n$ and every $\delta \in [0,1]$, let $B(n, \delta)$ denote the probabilistic model in which a random set $A \subseteq \{1, \dots, n\}$ is constructed by choosing independently every element of $\{1, \dots, n\}$ with probability $\delta$. Moreover, let $(u_k)_{k \geq 0}$ be an integer sequence satisfying $u_k = a_1 u_{k - 1} + a_2 u_{k - 2}$, for every integer $k \geq 2$, where $u_0 = 0$, $u_1 \neq 0$, and $a_1, a_2$ are fixed nonzero integers; and let $\alpha$ and $\beta$, with $|\alpha| \geq |\beta|$, be the two roots of the polynomial $X^2 - a_1 X - a_2$. Also, assume that $\alpha / \beta$ is not a root of unity. We prove that, as $\delta n / \log n \to +\infty$, for every $A$ in $B(n, \delta)$ we have $$\log \operatorname{lcm} (u_a : a \in A) \sim \frac{\delta\operatorname{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3\log\!\big|\alpha / \!\sqrt{(a_1^2, a_2)}\big|}{\pi^2} \cdot n^2 $$ with probability $1 - o(1)$, where $\operatorname{lcm}$ denotes the lowest common multiple, $\operatorname{Li}_2$ is the dilogarithm, and the factor involving $\delta$ is meant to be equal to $1$ when $\delta = 1$. This extends previous results of Akiyama, Tropak, Matiyasevich, Guy, Kiss and Matyas, who studied the deterministic case $\delta = 1$, and is motivated by an asymptotic formula for $\operatorname{lcm}(A)$ due to Cilleruelo, Rue, Sarka, and Zumalacarregui.

中文翻译:

关于二元递推序列随机项的lcm

对于每个正整数 $n$ 和每个 $\delta \in [0,1]$,让 $B(n, \delta)$ 表示概率模型,其中随机集 $A \subseteq \{1, \dots , n\}$ 是通过以概率 $\delta$ 独立选择 $\{1, \dots, n\}$ 的每个元素来构造的。此外,令 $(u_k)_{k \geq 0}$ 是满足 $u_k = a_1 u_{k - 1} + a_2 u_{k - 2}$ 的整数序列,对于每个整数 $k \geq 2$,其中 $u_0 = 0$、$u_1 \neq 0$ 和 $a_1、a_2$ 是固定的非零整数;并让 $\alpha$ 和 $\beta$,与 $|\alpha| \geq |\beta|$,是多项式 $X^2 - a_1 X - a_2$ 的两个根。另外,假设 $\alpha / \beta$ 不是统一的根。我们证明,作为 $\delta n / \log n \to +\infty$,对于 $B(n, \delta)$ 中的每个 $A$,我们有 $$\log \operatorname{lcm} (u_a : a \in A) \sim \frac{\delta\operatorname{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3\log\!\big|\alpha / \!\ sqrt{(a_1^2, a_2)}\big|}{\pi^2} \cdot n^2 $$ 概率为 $1 - o(1)$,其中 $\operatorname{lcm}$ 表示最小公倍数, $\operatorname{Li}_2$ 是对数,当$\delta = 1$ 时,涉及$\delta$ 的因数意味着等于$1$。这扩展了 Akiyama、Tropak、Matiyasevich、Guy、Kiss 和 Matyas 之前的结果,他们研究了确定性情况 $\delta = 1$,并且受到了 Cilleruelo 的 $\operatorname{lcm}(A)$ 渐近公式的启发、Rue、Sarka 和 Zumalacarregui。当$\delta = 1$时,涉及$\delta$的因子意味着等于$1$。这扩展了 Akiyama、Tropak、Matiyasevich、Guy、Kiss 和 Matyas 之前的结果,他们研究了确定性情况 $\delta = 1$,并且受到了 Cilleruelo 的 $\operatorname{lcm}(A)$ 渐近公式的启发、Rue、Sarka 和 Zumalacarregui。当$\delta = 1$时,涉及$\delta$的因子意味着等于$1$。这扩展了 Akiyama、Tropak、Matiyasevich、Guy、Kiss 和 Matyas 之前的结果,他们研究了确定性情况 $\delta = 1$,并且受到了 Cilleruelo 的 $\operatorname{lcm}(A)$ 渐近公式的启发、Rue、Sarka 和 Zumalacarregui。
更新日期:2020-08-01
down
wechat
bug