当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Multi-Scale Differential Feature for ECG Biometrics with Collective Matrix Factorization
Pattern Recognition ( IF 5.898 ) Pub Date : 2020-01-20 , DOI: 10.1016/j.patcog.2020.107211
Kuikui Wang; Gongping Yang; Yuwen Huang; Yilong Yin

Electrocardiogram (ECG) biometrics has recently received considerable attention and is considered to be a promising biometric trait. Although some promising results on ECG biometrics have been reported, it is still challenging to perform this technique robustly and precisely. To address these issues, this paper presents a novel ECG biometrics framework: Multi-Scale Differential Feature for ECG biometrics with Collective Matrix Factorization (CMF). First, we extract the Multi-Scale Differential Feature (MSDF) from the one-dimensional ECG signal and then fuse MSDF with 1DMRLBP to generate the MSDF-1DMRLBP, which acts as the base feature of the ECG signal. Second, to extract discriminative information from the intermediate base features, we leverage the CMF technique to generate the final robust ECG representations by simultaneously embedding MSDF-1DMRLBP and label information. Consequently, the final robust features could preserve the intra-subject and inter-subject similarities. Extensive experiments are conducted on four ECG databases, and the results demonstrate that the proposed method can outperform the state-of-the-art in terms of both accuracy and efficiency.
更新日期:2020-01-21

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug